RSS feed for comments on this post.

  1. The first and last two reading materials links appear to be either circular or broken…

    [Response: thanks. I think they are fixed now, plus added an additional link where the Bromwich et al study is first mentioned. -mike]

    Comment by Jeremy — 23 Dec 2012 @ 2:09 PM

  2. Antarctic’s Circumpolar temperature wave with 8 year period has a wave number of two, which would suggest that temperature in any particular (coastal) area would go up every four years. Any comment?

    Comment by vukcevic — 23 Dec 2012 @ 2:50 PM

  3. The usual suspects are also experiencing something of a meltdown.

    [Response: ;-) –mike]

    Comment by Russell — 23 Dec 2012 @ 3:19 PM

  4. “Antarctica is actually warming by about a factor of two more
    than we estimated.”

    Eric, do you mean “two more” (ie 1 + 2 = 3) or “two times” (ie 1 + 1 = 2)?

    I’m just trying to figure out if it’s twice as bad as you thought or three times as bad.

    Comment by Garry S_J — 23 Dec 2012 @ 4:26 PM


    Hansen (2007) suggested that a 10-year doubling time was plausible, pointing out that such a doubling time from a base of 1 mm per year ice sheet contribution to sea level in the decade 2005-2015 would lead to a cumulative 5 m sea level rise by 2095.”

    Nature: Antarctica Is Melting From Below, Which ‘May Already Have Triggered A Period of Unstable Glacier Retreat’

    Comment by prokaryotes — 23 Dec 2012 @ 4:48 PM

  6. Garry S_J: “Factor = a quantity by which a stated quantity is multiplied or divided, so as to indicate an increase or decrease in a measurement”.

    Comment by flxible — 23 Dec 2012 @ 6:19 PM

  7. This one makes the NYT:

    Comment by Rattus Norvegicus — 23 Dec 2012 @ 9:12 PM

  8. Russell, you never disappoint. But who is the redhead?

    And is there any news from Thwaites?

    Comment by Susan Anderson — 23 Dec 2012 @ 9:16 PM

  9. Susan :
    1.Thwaites? The luthier, the glacier, or the pork pie maker?

    2. The doyenne of American oceanography

    Comment by Russell — 23 Dec 2012 @ 10:37 PM

  10. Thanks for the article. I need such a reference often.

    Comment by Edward Greisch — 24 Dec 2012 @ 1:28 AM

  11. Times they are a-changin…

    Comment by Vendicar Decaruan — 24 Dec 2012 @ 2:58 AM

  12. #11–Well-said. Too bad they didn’t stick around to listen: “I note the absence of a quorum.” At least he’s on record.

    Comment by Kevin McKinney — 24 Dec 2012 @ 9:44 AM

  13. RE: #11 Vendicar

    That Youtube video you posted is an excellent example of
    good communication about the known (and unknown) facts
    about Climate Science (as well as the politics) imho.
    THX I have already shared it with others.

    US Senator Sheldon Calls Out Climate Change Deniers – 20mins

    Comment by Sean — 25 Dec 2012 @ 1:30 AM

  14. Trying to get a look at LarsenB but find that the latest modis etc pics are from 2009 can anyone point me to more recent sat observations.

    Comment by FundMe — 25 Dec 2012 @ 5:59 PM

  15. You can get the latest Antarctic mosaic and zoom in on Larsen at the following NASA site:

    Comment by Mitch — 26 Dec 2012 @ 8:59 AM

  16. >”Bromwich et al.’s updated record for Byrd Station should now be routinely incorporated into global temperature compilations such as those done by GISS and CRU. Doing so will, I think, change the picture of climate change in the Southern Hemisphere, and not insignificantly.”

    When is that likely to happen?

    Comment by crandles — 26 Dec 2012 @ 9:28 AM

  17. FundMe — try poking around here:

    Comment by Hank Roberts — 26 Dec 2012 @ 11:52 AM

  18. FundMe: better source. Pick a date range, there are images from the last couple of months:

    Comment by Hank Roberts — 26 Dec 2012 @ 12:12 PM

  19. Thwaites Glacier has calved on major iceberg in 2012 and the embayment on the west side of the main tongue is continuing to expand in the last month.

    Comment by Mauri Pelto — 26 Dec 2012 @ 2:33 PM

  20. An interesting remaining question is what failed in O’Donnell et al?

    [Response: Well, as I explained here, they would have gotten a better answer had those chosen any other parameter for a particular part of their routine than they did. I pointed this out in my review, but those chose to ignore it. I make no comment as to why.

    I also noted that O’Donnell et al. treated the occupied Byrd station and Byrd AWS stations as two independent data sets, and because their calculations (like ours) remove the mean of each record, O’Donnell et al. removed information that might be rather important: namely, that the average temperatures in the AWS record (post 1980) are warmer — by about 1°C — than the pre-1980 manned weather station record. This observation, of course, is the precisely the basis of Bromwich et al.’s work. I considered this myself, but didn’t trust the instrument calibration at the time. I was right, as it turns out (as Bromwich et al. discovered, and for which they corrected). –eric]

    Comment by Eli Rabett — 26 Dec 2012 @ 8:45 PM

  21. I misspoke. Does anyone know what’s happening with the Thwaites glacier? Last I saw anything, the crack was nearly complete.

    It’s interesting, most people outside the field are unaware of how difficult these observations are to make/collect. This frees them to snipe at the inexactitude rather than heed the warnings.

    Comment by Susan Anderson — 26 Dec 2012 @ 9:58 PM

  22. Susan, the latest info ought to be here:

    Comment by Hank Roberts — 26 Dec 2012 @ 11:59 PM

  23. A question about the temperature correlation map in the paper:

    Both the Antarctic peninsula and the WAIS have apparently undergone marked warming during the last 50 years. However the WAIS and Antarctic annual temperatures show negligible correlation.

    That seems somewhat anti-intuitive to me. In my mind the correlation coefficient would be determined by plotting each annual temperature of WAIS against each corresponding annual temperature of the peninsula. Presumably they were both relatively lowish 50 years ago and relatively warmish now and somewhat intermediate at intermediate years.

    So is the absence of correlation due to the large standard deviations in the temperature data? Or is the correlation determined in some other way? Or do annual temperatures tend to go up in the peninsula when they tend to go down on the WAIS? or what…?

    [Response: The Peninsula is anti-correlated with West Antarctica on interannual timescales, because shifts in the trajectory of storms will tend to favor one area or another. But on the long timescale they are warming up together. This is probably because while the position of storms varies year to year, the average number of storms that bring warm air into the area has increased everywhere. The area of the Peninsula that is most highly correlated with the updated Byrd record is Faraday station, which is usually the station cited as showing the rapid warming on the Peninsula.–eric]

    Comment by chris — 27 Dec 2012 @ 11:18 AM

  24. Thanks Hank. That’s a nifty little animation. No label about Thwaites – had to check, here:

    Comment by Susan Anderson — 27 Dec 2012 @ 11:03 PM

  25. Re #23, chris:

    On the local level, variability is still much larger than the warming trend. Here are more complete maps of temperature correlation to Byrd. There are still huge areas of negative correlation. It’s not very different on the northern hemisphere, where the trend is up almost everywhere. The maps show mostly weather; patterns that persist over several months are more likely to be climate. Data are from NCEP reanalysis 2, including the reference values near Byrd where the trend is about .1 K/a in R2.

    Jan · Feb · Mar · Apr · May · Jun · Jul · Aug · Sep · Oct · Nov · Dec

    [Response: Nicely done. Though notably, there are no negative correlations with Byrd anywhere in West Antarctica. To the extent these correlations apply to the longer timescale then it is warming everywhere in West Antarctica (as of course we showed back in 2009).–eric]

    Comment by Andreas — 29 Dec 2012 @ 6:47 PM

  26. Thanks eric and Andreas for your clarifications.

    Comment by chris — 30 Dec 2012 @ 1:11 PM

  27. New paper by James Hansen et al in review at Phil Trans Roy Soc:

    Climate sensitivity, sea level, and atmospheric CO2

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 ± 1°C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that burning all fossil fuels would create a different planet, one on which humans would find it difficult to survive.

    Comment by wili — 31 Dec 2012 @ 1:00 AM

  28. A very nice comparison of recent work, but I note that, just as the global temps have been in a stillstand for nearly a decade, so it is with the West Antarctica–no significant rise since 2,000 or so.

    [Response: not really. I think we have discussed many times why short term linear trends are not predictive of anything very much – and that goes double for single points. – gavin]

    Comment by Chick Keller — 31 Dec 2012 @ 11:53 AM

  29. Chick Keller @28 — The trend in global temperature continues:

    [Response: Very nice graphic; thanks for point it out. Then of course there is the point that 11/12 of the warmest years on record occurred during the 21st century (so far).. –eric]

    Comment by David B. Benson — 31 Dec 2012 @ 8:29 PM

  30. To back up David’s graphic at 29, there’s also Stefan and Tamino’s work at:

    Comment by Tokodave — 31 Dec 2012 @ 10:09 PM

  31. A third set of graphic images is also useful making clear what’s happening:

    “… with the color coding according to the phase of ENSO, the eye is able to compare apples to apples: the upward long-term trend during El Niño years (red triangles) is plain, the upward long-term trend during neutral years (green squares) is plain, and the upward long-term trend during La Niña years (blue diamonds) is plain.

    Stare hard enough, though, and you see that they have leveled off. The last ten data points have little or no trend. But we see that the lack of trend is at least partly due to the El Niño year near the beginning of the 10-year period and the two La Niña years near the end.

    Let’s get quantitative about this. In this case, with the temperature rise being nearly linear, it helps to add trendlines….”

    [Response: I would say “almost entirely”, not “at least partly”. That’s the finding in, Foster and Rahmstorf’s paper –eric]

    Comment by Hank Roberts — 1 Jan 2013 @ 9:03 AM

  32. Eric, yes, that blog post discussion begins by citing “A recent paper I like by Foster and Rahmsdorf … takes a statistical approach to attempt to eliminate the effect of the other known forcing mechanisms, and what’s left over is a fairly steady warming….. I decided to take a simple approach at looking at the effect of ENSO….”

    Then he goes on using three charts — the attribution “as least partly” from looking at the first of the three — then he goes further:

    He says “Let’s get quantitative” and does the analysis, shown in two more charts, to bring the reader to the conclusion:

    “… All else being equal, an El Niño year will average about 0.2 C warmer globally than a La Niña year. Each new La Niña year will be about as warm as an El Niño year 13 years prior….”

    The last of the three charts on that page is:

    —- a bit tangential but I thought the use of the graphics helped.

    Comment by Hank Roberts — 1 Jan 2013 @ 11:42 AM

  33. Eric Steig wrote:
    “the average number of storms that bring warm air into the area has increased everywhere”

    Polar amplification is a testable prediction rooted in the basic physics of AGW theory, and is particularly important because it can be validated or refuted in the reasonably near term. Storminess increases can of course also be related to AGW, but how can the effect of the increase in storms be teased from the true physics-based polar amplification of warming in Antarctica in order to independently evaluate the prediction of polar amplification?

    [Response: Testing the changes storms against “prediction” will be difficult, if not impossible. As for polar amplification, which aspect of the basic physics are you referring to? The most obvious one is that polar amplification is predicted from the Stefan Boltzmann equation (you have to warm up cold places more, in order to balance the same radiative forcing). But there is also the sea-ice albedo effect, which is completely separate. And on real planets like earth, dynamical changes play a huge rule. In Antarctica, the wind field — not thermodynamics — dominates the sea ice response. “Basic physics” doesn’t always lead to quiite-so-simple testable predictions (though, not incidentally, climate models generally have little polar amplification over the Southern Ocean and Antarctica because ocean heat uptake increases most in the Southern Ocean as the climate warms). See our post on polar amplification from a few years back (here) for more discsussion. — eric]

    Comment by Matt Skaggs — 1 Jan 2013 @ 12:09 PM

  34. 32 Hank quoted, “Each new La Niña year will be about as warm as an El Niño year 13 years prior….”

    So twice per generation we’re turning what was a typical warm month into a typical cool one. I see grandparents telling tales of snowdrifts to children who’ve never seen a flake.

    Comment by Jim Larsen — 1 Jan 2013 @ 3:42 PM

  35. What is happening in East Antarctica; two thirds of the continent?

    [Response: It is warming nearly everywhere but at a statistically insignificant rate. South Pole can no longer be said to be cooling — the trend over the entire record (1957-2011) is flat. You can get the data here if you are interested.–eric]

    Comment by Ken Lambert — 2 Jan 2013 @ 5:22 AM

  36. Saw this paper on the day of return from AA peninsula. Can anyone explain why the AA sea ice extent was apparently so great this year? They also report a great deal of snow fall, which I understand. Thanks.

    Comment by PJMD — 3 Jan 2013 @ 12:36 AM

  37. For PJMD re Antarctic sea ice extent

    Note I’m just another reader here, you can look for answers the same way I do. Here’s what I found with this search:

    “According to … recent study Claire Parkinson and Donald Cavalieri of NASA’s Goddard Space Flight Center, Antarctic sea ice increased by roughly 17,100 square kilometers per year from 1979 to 2010. Much of the increase, they note, occurred in the Ross Sea, with smaller increases in Weddell Sea and Indian Ocean. At the same time, the Bellinghausen and Amundsen Seas have lost ice. “The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation

    That last link says in part

    “… Since 1980 …. loss of ozone caused atmospheric pressure to decrease over the Amundsen Sea, thereby strengthening the winds on the Ross Ice Shelf, according to NASA Goddard scientist Josefino Comiso, coauthor of a recent study that models the connection between ozone, wind speeds, and climate in the Antarctic. The changes help explain one of the paradoxes of the Antarctic: while sea ice in some areas is growing rapidly, it’s retreating at a rapid pace in others.

    The new model suggests that colder, stormier, and faster winds are rushing over the waters encircling Antarctic — especially the Ross Sea, where ice growth has been the most rapid. The winds create areas of open water near the coast – known as polynyas – that promote sea ice production.

    At the same time, warmer air from higher pressure systems are simultaneously encroaching upon the Antarctic Peninsula, one sliver of the continent that is experiencing rapid warming….”

    [Response: That’s an okay paper, the idea that atmospheric circulation is driving sea ice changes is not new. And that paper ignores all the evidence (!!) for what’s happening in West Antarctica. Much more relevant are the paper from two years ago by Schneider and others (here), and this year by Holland et al. (Wind driven trends in Antarctic sea-ice drift). You can read about the latter paper in the Guardian, here. Of course, the best answer to the question about the Peninsula this year is that there is a lot of stochastic interannual variability in the winds, and it can’t always be pinned down to one thing (e.g. an El Niño year).–eric]

    Comment by Hank Roberts — 3 Jan 2013 @ 10:23 AM

  38. Thanks Eric!

    Comment by Hank Roberts — 3 Jan 2013 @ 11:32 AM

  39. I see the GISS temperature record has been changed upwards for several years. Does this mean Byrd station data is already included?

    [Response: That seems unlikely! I will try to find out about this though.–eric]

    Comment by crandles — 16 Jan 2013 @ 3:27 PM

Sorry, the comment form is closed at this time.

Close this window.

0.371 Powered by WordPress