RSS feed for comments on this post.

  1. Eric, nice post thanks – draws two current results together well. Just a comment or two about the issue of warming, lack of accumulation, and what this might mean for projections (and for the reader’s benefit I should disclaim that I am a coauthor on both papers).

    Specifically, you state that it is “premature to conclude (as the paper does) that we may need to revisit…”. The basis for this remark in Monaghan et al. is the recent work of Turner et al, which showed very strong mid-tropospheric warming since the early 1970s, albeit not at the surface. Now we find that this is not accompanied by accumulation increase. It is this observation that leads to the fairly cautious statement that it “may be necessary to revisit GCM assessments”. Note the word “may”. It is certainly necessary to evaluate whether GCM results are consistent with these new longer and more complete observations, and to understand what lies behind any discrepancies detected.

    Of course it has been pointed out by others that the simple thermodynamic argument of warmer=wetter is missing an important part of the story. Particularly in Antarctica, moisture transport, driven by trends in atmospheric circulation, plays a key role, and this is of course why modeling is necessary for understanding. Here also is where another connection can be made with the Schneider et al. paper, which underscores the impact on temperature of circulation changes, particularly associated with the Southern Annular Mode (SAM).

    As you note, the results taken together show reasonable concordance between the surface temperatures and the snow accumulation. I tend to agree that as we see longer reconstructions there may not be surprises, inasmuch as the surface temperature and accumulation link will probably be robust: particularly where cyclonic precipitation dominates.

    But it still leaves me wondering then about the disconnect between surface and mid-tropospheric temperature trends and their respective connections with moisture transport. How does this mesh with the GCMs and what does it mean for projections of snow accumulation in Antarctica? I would be interested to hear comment on this.

    [Response:Hey Tas! Thanks for dropping by RealClimate. I agree with your comments. The major point I’d make in response is that the lack of any statistically significant trend in accumulation in the 50 year record of Monaghan et al. has to be understood in the context of the vary large variability, as Andy [Monaghan] explained very nicely in the NSF press release. The same should be said of the temperature records in our [Schneider et al.] paper. So the lack of any statistically significant trend in accumulation in no way says that tropospheric warming is having no impact on snowfall. It may simply say that other things — i.e. changes in moisture convergence — are having an equally large impact, with a net result of no obvious change. The question then becomes how these things play out in the long term. My suspicion is that dynamics rules the day in the short term, but that over the long term, therodynamics wins out — if it gets a lot warmer, there will be more moisture available and on average there will be more snow. It could happen that the dynamical changes could cancel out this effect, but it seems unlikely to me. Having said all that, it is certainly worth exploring more fully, and I, like you, would be curious what the response will be from the dynamics community to both these papers. — eric

    Comment by Tas — 25 Aug 2006 @ 8:52 PM

  2. In an Antarctica that is moving entropic with respect to a molar heat of fusion in re water there, and the recent appearance of high-atmosphere nacreous cloud forms, very rarely formally observed in Antarctica, it would seem that that continent is radiating a large portion of its heat through a more or less transparent upper atmosphere directly into space, producing a remarkably cold high atmosphere, layering above a putatively cooling but still a relatively much warmer lower atmosphere. The increasing differential of the potential energies between the lower and upper atmospheres of that continent form the crux of these issues, not whether the ice cores are cooling or warming, taken in and of and by themselves.

    [Response: In general, I would agree, and Monaghan et al. were quite justified in emphasizing the upper-tropospheric warming as opposed to the surface cooling, in discussing the snowfall/temperature relationship. I’d note, though, that precipitation in the Antarctic is peculiar, in that much of it actually falls from a clear sky, and the near surface temperature may actually be quite important, especially in the dry continental interior, in determining whether snow actually forms and precipitates or not. A problem that is most certainly not treated very well in GCMs are the details of ice formation at cold temperatures — it is difficult to do because it depends on getting the humidity just right, as well as the aerosol concentraiton and size distribution. These things — and the snowfall itself, since the rate is so low — are very hard to measure, and good analyses are few and far between. — eric ]

    Comment by Rob Miller — 25 Aug 2006 @ 9:21 PM

  3. “Average (Antarctic) warming prior to the mid 1980’s, and average cooling thereafter.”

    This is interesting to compare with the Alaska temperature record. A 2005 paper by Hartmann suggests that following a phase shift in the PDO in 1976 (quick warming), there has also been a slight average cooling trend in Alaska.

    It may be significant to note the warming at these high latitudes does not seem to be occuring gradually, but rather in quick pulses (a quick adjustment from one regime to another), and possibly associated with larger scale weather pattern (ocean SST) changes.

    Could this pattern of temp changes in both the high lat SH and NH records suggest that heat uptake in the oceans and exchange with the atmosphere is much more complex than currently represented by the IPCC models? What effect could such have on their ability to project regional climate changes?

    [Response: Linking the 1976 so-called “regime” shift in the North Pacific to anything in the Antarctic is a major stretch. For my part, I consider Thompson and Solomon — attributing recent dynamical changes in the Antarctic to ozone depletion — as the best work on recent Antarctic climate change at the moment. See our earlier post on this (and their paper of course, linked within that post): here. -eric ]

    Comment by Bryan Sralla — 25 Aug 2006 @ 9:25 PM

  4. The Dec 2004 discussion linked above suggested that stronger westerlies were responsible for preventing Antarctic warming. Is this result still supported in current models? What is the current state of antarctic weather modeling? This paper points out that lowering the mixing ratio has to be lowered beneath the normal model threshold to obtain fewer or thinner clouds in the model to match observations. This to me illustrates the danger of parameterizing weather rather than simulating it in greater detail. But after the model tweak that extra snow has to fall which doesn’t seem to match the reality indicated above.

    Comment by Eric (skeptic) — 25 Aug 2006 @ 10:09 PM

  5. A factoid might putatively be that we will need to make an antithetical and corollary sister for the PETM. Unfortunately, we haven’t yet made a name for what is coming in our supposed future, as sister to our present, so an acronym does not exist like that which exists for the Paleocene-Eocene Thermal Maximum. If a thermal minimum catastrophic climate event were to originate in the Island of Antarctica (no easing landlock of ice to shorten the pain), there might be no time machine in which we could ride that we might be able to find ourselves in any future. And that is why all this science is about.

    Comment by Rob Miller — 25 Aug 2006 @ 10:21 PM

  6. To make my weather question more specific, has the modeling improved from this result where the persistent trough was underestimated until weather was added (see ).

    Comment by Eric (skeptic) — 25 Aug 2006 @ 10:35 PM

  7. Re#5 “thermal minimum catastrophic climate event” as in ice age? I don’t suppose anyone coined the phrase Paleocene-Eocene Thermal Maximum before it happened either.

    Comment by Sally — 25 Aug 2006 @ 10:50 PM

  8. man did not exist during the PETM. no one that i know of ever mentioned, really, a pending thermal minimum catastrophic climate event. besides, we invented the word “catastrophe”. any “age” can go any way “it” wants, inasmuch as me, and everybody else, has got next to zero understanding of the dynamic involved. i just think that ice, catastrophic for humanity ice, is more likely.

    Comment by Rob Miller — 25 Aug 2006 @ 11:01 PM

  9. narwals talk about the north, no ways dream about the south

    Comment by Rob Miller — 25 Aug 2006 @ 11:30 PM

  10. most people understand the idea of “mars” more than they understand the idea of “antarctica”, although it is the fifth largest of seven continents, and mitigates for a large portion of the food and weather available to our species on this planet. to most it might as well be in another solar system. this only points out our own superficiality and a putative argument for our species dissolution or extermination. its really a very bad situation for us.

    Comment by Rob Miller — 25 Aug 2006 @ 11:45 PM

  11. Shishmaref, Alaska is falling into the sea. This seems to me, a long term indicator since the people and their ancestors have never experienced anything like this before.

    Comment by Mark A. York — 25 Aug 2006 @ 11:52 PM

  12. Thanks for the blog, it’s been my main source of climate information for quite some while now. What I’ve been wondering is, would it be possible in most cases to have a very short ‘abstract’ providing the conclusions your post has in the beginning so that people with limited amount of time could check the conclusions and then decide whether to read the whole post, or just parts of it?

    Comment by Mikko — 26 Aug 2006 @ 3:39 AM

  13. RE #5,

    I am struggling to get your drift, thusfar, but I do offer [an antithetical and corollary sister for the Paleocene-Eocene Thermal Maximum (PETM).]

    It is:

    Paleocene-Anthropocene Intergenerational Nightmare (PAIN).

    Given the information I have processed from exensive reading and listening, I conclude PAIN is in our future.

    [Response:Let me just say that I’m enjoying this discussion, even it is getting a bit silly. -eric]

    Comment by John L. McCormick — 26 Aug 2006 @ 8:45 AM

  14. Re #13 That should be Pleistocene-Anthropocene not Paleocene, otherwise I completely agree :-(

    See and

    It does leave the Holocene out on a limb, but it should really be put in the Anthropocene because that was when the damage started to be done.

    Comment by Alastair McDonald — 26 Aug 2006 @ 10:18 AM

  15. With respect to Bryan Sralla, comment #3:

    Hartmann and Wendler’s paper ( does seem to show nonlinear stepwise trends in Alaskan temperatures. However, “average temperature of the 6 climate regions”, plotted in their Figure 5, is decidedly NOT the same as average temperature of the land surface of Alaska. Consider their Figure 1, showing the climate regions of Alaska: as you can clearly see, the Interior region is maybe 60% of the land area of Alaska – the other 5 regions are condensed into the remaining area. Averaging numbers with such sampling regions does not an average land temperature make.
    Picking an arbitrary high-water mark, here 1976, raises the possibility of a well-known statistical phenomenon of regression towards the mean. You can always make it look like the temperature is cooling by choosing a nice hot year to start your clock from – and only consider years subsequent to that. So, has the climate in Alaska cooled since 1976? It is important to consider whether more recent data support the hypothesis. The paper you cite uses data up to 2001, their last year of record. We now have data up to 2006. I went to the NASA GISS site for climate change, and served myself up a graph of climate change in Alaska since 1976. The graph is here: . I chose as my reference period the years 1977 to 1987, and as my period of consideration the years 2001 to 2006, the “new data” since the paper was published. If it is true that Alaska is cooling, it must perforce be true that it will continue to cool to preserve the hypothesis. I used the small-scale binning – 250 kilometer radius – so that we get some good spatial resolution on Alaska. Guess what? ALL of Alaska is warmer than the reference period, save the Seward peninsula – which has not cooled; and a region on the border with Canada, overlapping the Porcupine river – which has not cooled. Of course, the GISS data server does not compute probabilities for statistically significant cooling/warming; and the spatial resolution flickers around if you pick different starting or ending years, but the trend is fairly solid – Alaska doesn’t seem to be cooling continuously since 1977.

    Comment by Steffen Christensen — 26 Aug 2006 @ 10:58 AM

  16. Re: #3 Eric, thank you for the response. Just in the way of clarification, I was in no way trying to link the PDO with anything in the Antarctic.

    Instead, it was my intention to point out some interesting contemporaneous data in the high lat NH. I may be wrong for infering this, but it appears to me that the IPCC models are missing many of the salient details in both the Arctic and Antarctic. The spacial and temporal pattern of climate change at both ends seems to be more complicated than advertized. This would seem an important observation worth pondering.

    [Response: Point taken; I agree with you. -eric]

    Re: #15, I have invited Gerd Wendler to respond to your comments. I hope he will.

    Comment by Bryan Sralla — 26 Aug 2006 @ 11:57 AM

  17. Thank you, Alastair, I accept your edit and hereby launch the corrected
    [antithetical and corollary sister for the PETM].

    Pleistocene-Anthropocene Intergenerational Nightmare…..PAIN

    It might sound silly to some but it does it for me.

    Comment by John L. McCormick — 26 Aug 2006 @ 12:00 PM

  18. Holocene Anthropocene Latent Termination …. or HALT.

    [Response: Sorry, but PAIN is the best one I’ve heard yet. – eric]

    Comment by Sally — 26 Aug 2006 @ 12:10 PM

  19. Actually the sequence of Phanerzoic eras, as opposed to the much shorter epochs such as Holocene, Eocene etc, are the Palaeozoic (Old Life), Mesozoic (Middle Life), and Cenozoic (New Life).

    The P-T mass extinction occurred at the Palaeozoic/Mesozoic boundary, and the K-T extinction of the dinosaurs occurred at the Mesozoic/Cenozoic boundary. The megafaunal extinction which began at the end of the Pliestocene (the penultimate Cenozoic epoch)was just the start of the anthropogenic mass extiction which will lead to the Cenozoic/Anzoic mass extinction. Of course, the name Anzoic Era means “No Life” but then no one will be around to name it :-(

    Comment by Alastair McDonald — 26 Aug 2006 @ 12:37 PM

  20. re 3.


    I had discussions with Brian Hartmann about his faulty interpretation of the Alaska climate station data (while he was at the climate-change yahoo group, which no longer exists). My summary of annual climate data (1950-2005) that I made in Feb 2006 is below.

    Annual temperature data at 18 climate stations in Alaska show 3-6 Deg. F increases from 1950 through 2005. Of the 18 climate stations in Alaska, 6 are located near the coast and 18 are inland.
    Annual temperature plots for all 18 climate stations in AK are at:

    Above summary at climateArchive, message #1800 (Feb 15, 2006).

    Comment by pat neuman — 26 Aug 2006 @ 2:38 PM

  21. Re #20: Thank you for this Pat. The Alaska Climate Research Center is showing a 3.5 degree F warming over this time period. That falls into the same error bar as your estimates. As for the choice of stations, these guys live and work in Fairbanks, Alaska and have no doubt visited many of the field stations personally. I would really encourage you to publish a paper in rebuttal, showing why their choice of stations was inappropriate, and your choices are more robust. Your interpretations of the data are very beneficial for your personal study, but have not been subject to editorial or peer review from the wider community.

    Comment by Bryan Sralla — 26 Aug 2006 @ 3:52 PM

  22. re 20. It should be of the 18 climate stations in Alaska, 12 are located near the coast and 6 are inland.

    [Response: This discussion suggests a RealClimate post on Alaskan climate at some point — and on the PDO — would be useful. We’ll think about this. For now, I’d be delighted if commenters can generally restrict themselves to the topic at hand. I’m not chastising, just politely asking. — eric]

    Comment by pat neuman — 26 Aug 2006 @ 3:53 PM

  23. Antarctica has been frozen over for 35 million years. The average annual temperature at the South Pole is -49.5 C. It is not going to melt.

    [Response: What you say is very true on average, utterly wrong in the important details. Among other thinsgs you should look at our post on Antarctic Peninsula glacier retreat, if you are interested in getting the details right. –eric]

    Comment by Jeff Weffer — 26 Aug 2006 @ 5:48 PM

  24. Hi Everyone,

    This item seems to be making the rounds of the right-wing blogosphere: Greenland’s Glaciers Have Been Shrinking for 100 Years: Study. Any ideas? Does this show anything more earth shattering than on this one island glaciers have shrinking for about a century? An interesting comment that I wonder about is: “The shrinking of the glaciers since the 19th century is ‘the result of the atmosphere’s natural warming, following volcanic eruptions for example and greenhouse gases, created by human activities, which have aggravated the situation further,’ he said.” Somehow, this is interpreted in places like FreeRepublic as proving Al Gore wrong.

    [Response: I’ve not yet looked at that particular study. It is probably a good study, being totally misinterpreted. Perhaps the most relevant response is simply to point folks to our several posts on the general fallacy of using natural climate changes associated with natural forcings as evidence against the responsiveness of the climate to other (e.g. anthropogenic forcing). In particular, here and here.–eric]

    Comment by Deech56 — 26 Aug 2006 @ 7:25 PM

  25. re 21.


    My work on temperature data at climate stations was explained and available for peer review at:

    Comment by pat neuman — 26 Aug 2006 @ 8:57 PM

  26. Re #23: Jeff, you need to broaden your sources a bit to include some that focus on science rather than supporting a priori determinations. In addition to Eric’s note, see e.g. this. It seems that the more we find out about past climate, the less stable it seems.

    Comment by Steve Bloom — 26 Aug 2006 @ 9:41 PM

  27. Re #21: Your mastery of Macropielkean is most impressive, Bryan. :) But just out of curiosity, what makes you think that the PDO shift in 1976 wasn’t a global warming signal? I don’t recall any peer-reviewed work on the ACRC site demonstrating that. Perhaps you could point me to it?

    [Response: Careful! What makes you think it was a global warming signal? I see a definite need for a “what the heck is the PDO, anyway” post… -eric]

    Comment by Steve Bloom — 26 Aug 2006 @ 9:47 PM

  28. Eric, is most of the Antarctic tropospheric warming being observed in the winter months, offset somewhat by negative temperature anomolies during the summer months? What about snowfall anomolies broken down by seasons? Any significant patterns?

    [Response: We unfortunately can’t get at sub-annual snowfall variations with ice cores. We can only get mean annual data. I wish it were otherwise, but this is generally the case, simply because of the way annual layers are detected in the ice. It may be possible at the very highest snow accumulation rates, but there are not many such sites. Most of the Antarctic tropospheric warming is indeed in the winter. I’m not deeply immersed in those data though — I refer you to the original paper noted in our past, here — eric]

    Comment by Bryan Sralla — 26 Aug 2006 @ 10:51 PM

  29. Re: #15/17

    Paleocene-Anthropocene No Ice Climate suggests itself.

    A hint of PANIC about our future?

    Comment by Gareth — 26 Aug 2006 @ 11:15 PM

  30. Re: #27. Thanks for the compliment Steve. RP1 seems like a good guy. I am glad you think that I am catching on. As far as the PDO, I have not a clue whether the shift in Alaska temperatures after 1976 was related to such. The Alaska folks (scientists and fisherman) seem convinced though(admittedly a little antecdotal).

    My reason for pointing out this paper was mearly to observe that the pattern of warming seemingly has taken place in short, big gobs, followed by fairly lengthy periods of more steady climate. Maybe we will eventually observe the same type of pattern on the Antarctic continent?

    To me, it intuitively seems possible this observed pattern may be a bi-product of complicated ocean heat storage, and a trigger-like transfer to the atmoshpere. With the current resolution and understanding of ocean circulation, such processes might be exceedingly difficult to model. RP1 has made similar points, so I give him the credit.

    Comment by Bryan Sralla — 27 Aug 2006 @ 12:06 AM

  31. Re #27, etc:

    Recent research has shown that there is much greater variability in ocean currents than has been previously believed, thus the climate change community must consider that there is much more to the problem of climate change than just what happens in the atmosphere. The oceans are connected and it’s been claimed that the THC is part of a system of global circulation, why not consider another alternative for the shift known as the PDO?

    There is evidence that the THC in the Greenland Sea was shutdown for some period in the late 1970’s and early 80’s. Given that fact, is it not logical to connect the evident change in the THC with the PDO shift? Furthermore, the so-called Great Salinity Anomaly (GSA) circulated around the Sub-Polar Gyre of the North Atlantic. I suggest that it’s plausible that these oceanic events were connected, although I can offer no support for that notion. Other GSA type events have been noted since the first was found, perhaps indicating a natural cycle which would change as global warming progresses. Perhaps these GSA events are like a ball bouncing on a hard surface, a system which oscillates while it slowly loses energy as a new rest state is approached. As the yearly cycle of sea-ice in the Arctic may be expected to continue toward a minimum of zero extent in future, we must be very concerned about the resulting changes in ocean circulation.

    [Response: Before making such links between the North Atlantic and the Pacific, it is very worth while to read Clara Deser’s work on the PDO, which in my view greatly de-emphasizes (and correctly de-emphasizes) the significane of the 1976 “regime shift” in the Pacific. I’ll track down the reference and put it here when I get a chance. -eric ]

    Comment by Eric Swanson — 27 Aug 2006 @ 11:09 AM

  32. Eric,

    You wrote: “it is also clear from satellite data that surface temperatures decreased during the years 1982 through 2002”. I presume you refer to the UAH data. As William pointed out back in March, the MSU data of Spencer and Christy may be giving incorrect trends over the Antarctic. There is a strong surface influence on the MSU over the Antarctic, due to the high elevations there. The RSS team does not even report results poleward of 70S.

    As I reported in a paper in the GRL, the MSU annual cycle does not agree with that found in the sonde data (doi:10.1029/2003GL017938). Furthermore, the S & C analysis depends on an algorithm which is intended to remove the known stratospheric component in the data, but this algorithm may be optimized for temperate climate and thus fail to remove the well known stratospheric cooling trend reported over the Antarctic, where the tropopause appears at a lower level in the atmosphere.

    Another issue that S & C completely ignore is the fact that the MSU/AMSU instruments scan cross track, which means that the scans are mostly meridonal over the polar regions. The S & C algorithm combines data from these scans, the result being that there is no way to detect local trends at the nadir positions, even though they produce maps showing such results. S & C also report data poleward of latitude 82.5, even though their algorithm does not provide this data. They use interpolation to fill in these locations.

    There’s more, but, in short, I don’t trust the UAH results over the Antarctic.

    [Response: Eric, thanks for dropping by. I’m actually referring to the surface temperature data from the thermal infrared band, from Comiso (2000, in J. Climate). This is very reliable, as shown by the high correlation with the instrumental data, and I don’t think there is any question about the 1980s, 1990s trends. Much of the Antartic surface really was cooling (and may still be). Whether these trends are meaningful, relative the to the natural variabilty is another question — the trends are simply not big enough to demonstrate unequivocally that they must be due to external forcing (e.g. ozone depletion). (In addition to Schneider et al,. 2006 out next week in GRL, see our papers on this in J. Climate (Schneider et al., 2004), as well as the Annals of Glaciology paper which is some earlier work we did with the ice cores (Schneider et al., 2005). I’m much less familiar with the above-surface data that you refer to, but I really ought to familiarize myself with it. As Tas van Ommen pointed out in his first comment (above), the difference between the surface and upper troposphere temperature trends is interesting and deserves further examination. I’ll write at greater length on this in a future post, after having read more of your work, and others you refer to. Best wishes, — eric]

    Comment by Eric Swanson — 27 Aug 2006 @ 11:54 AM

  33. Re #31 Where Eric Swanson wrote “I don’t trust the UAH results over the Antarctic.”

    I would be interested to know if you trust the sonde data in the Antarctic, and if so do you trust the sonde data in the tropics?

    Comment by Alastair McDonald — 27 Aug 2006 @ 2:17 PM

  34. Eric indicated that expecting a greater sea level rise for having less precipation over Antarctica than the global climate models have indicated is an extrapolation which is probably not warranted for reasons explained in his RC entry above.

    Based on historically large variation of precipitation over space and time, I tend to agree – that’s probably not warranted.

    However, I think that if average temperature over Antarctica is warming less than indicated (by global climate models), then regions other than Antarctica may be experiencing greater warming than indiated (assuming over-all global average temperature is tracking with global model expectations).

    The summer (July-Aug) temperatures in the southern US in 2005 and 2006 have warmer than might be explained by temperature variation alone. Thus, it may be warranted to suggest that a warmer southern US in summer is the price being paid for psosibly having a slower rate of Antarctica warming.

    For example (55 million years ago),

    Excerpt (Aug 26, 2006 – Minneapolis Star Tribune):

    A blizzard of scientific papers “reflects the community’s excitement
    at discovering an extraordinary perturbation in biogeochemical systems
    that was unimaginable 10 years ago,” James Zachos, an earth scientist
    at the University of California, Santa Cruz, declared on his website.

    “The evidence for dramatic warming during the event is overwhelming,”
    Dickens said. “It is witnessed in all the oceans and continents.”

    For example, digging in Wyoming’s Bighorn Basin, Scott Wing, a
    paleontologist at the Smithsonian’s National Museum of Natural History
    in Washington, found fossilized leaves from ancient bean plants that
    he said had migrated 1,000 miles north from the latitude of Louisiana
    to escape the heat.

    Many species of mammals arose during the PETM and spread to new areas
    of the world, altering the course of evolution.

    But the unusual warmth also caused the loss of many deep-sea
    species. “It was the most severe extinction in the last 90 million
    years,” said Gabriel Bowen, another Purdue geologist.

    Climatic rerun, only faster this time
    Global warming today may signal the return of a monster heat wave that
    altered the course of evolution.
    Robert S. Boyd, McClatchy News Service

    Also see:
    Fossil Butte is helping us to understand climate change

    Some studies have indicated that the tropical regions were only slightly warmer (or about the same) than today when in previous global warm episodes, suggesting that future global warming in the tropics may not be large (certainly much less warming than polar regions).

    However, there seem to be signals being sent (less Antarctica warming, greater warming in the southern US and Upper Midwest) that, although global averages are increasing as indicated by models, the regional warming expectations may have been off (i.e. faster rate of warming in non polar regions than anticipated … compensated for in global averages by perhaps a slower rate of Antarctic warming).

    Comment by pat neuman — 27 Aug 2006 @ 3:40 PM

  35. Having seen Explorer Will Steger present his photos of before and after the collapse of the Larson B ice shelf and other material, it seems that if Antarctica is loosing ice mass it would be more likely to be doing so mainly from an increase in melt runoff following the collapse of ice shelves than from less precipitation over the shrinking continent.

    Bryan, What you said about my study on AK data (in #21) warrants more discussion, but at a later time. However, I think your comment that my interpretations of data have not been subject to editorial or peer review from the wider community warrants a reply from me at this time.

    Supervisors with my previous employer (NOAA NWS) refused to allow me to get peer review on studies of climate stations and climate-hydrologic change in the Upper Midwest. NWS supervisors claimed that climate change was too controversial and politicized to deal with, and well beyond the time frame of NWS hydrologic modeling and forecast responsibility. I was well aware in 2000 that hydrology was experiencing change along with the climate in the Upper Midwest. Me saying so at that time was very detrimental to my career as a hydrologist. I was removed from government service in 2005. I don’t think going through a peer review process would be worthwhile at this time, given my professional reputation with NOAA. I’ll spare Hank the details this time.

    Comment by pat neuman — 27 Aug 2006 @ 9:30 PM

  36. This is a no brainer, we need to stop the coal consumption and push the solar and water fuel techonologies before it is to late and there is no stopping the climate change.

    Comment by kary — 28 Aug 2006 @ 8:17 AM

  37. Re #33: Alastair,

    Having looked intensely at some of the BAS sonde data from the Antarctic, which I presented in my GRL report, I know there are many problems with that data. I think it’s well known that there are many problems associated with all sonde data sets, an issue which has been often discussed in the scientific literature. I hope you’ve seen the CCSP SAP 1-1 report, but there is also Seidel et al., “Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets”, J. Climate 17, 2225 (2004), if you are really interested.

    Comment by Eric Swanson — 28 Aug 2006 @ 9:03 AM

  38. Response in 32. says … Whether these trends are meaningful, relative the to the natural variability is another question — the trends are simply not big enough to demonstrate unequivocally that they must be due to external forcing (e.g. ozone depletion). …

    I think scientists need to be careful not to downplay the meaning of regional changes to just natural variability. Besides, there is no natural climate variability anymore due to anthropogenic global warming happening. Moreover, in evaluating change in a single region such as in parts of Antarctic, scientists should be looking at the latest globally averaged data and climate change in other regions as well. For that reason, in order to better understand what’s happening with temperatures in the Antarctic, scientists need to also consider what’s going on in the Arctic, the Upper Midwest, Europe and southern US summer abnormally warm temperatures in 2005 and 2006, and other regions of the world.

    Having a ‘big enough’ cooling trend in Antarctic would not demonstrate unequivocally that the cooling is due to external forcing (e.g. ozone depletion). Besides, based on the theory of polar amplification we should be seeing significant warming happening in Antarctic and not significant warming in low latitudes of the US. Scientists need to be monitoring regional temperatures. If trends are developing that don’t fit the big picture modeling (polar amplification) then scientists need to try to understand that and give their best shot at what’s likely to happen on a regional basis. Let us know ASAP if you think polar amplification should be tossed out the window for now.

    I sited a study as an example in comment #34. In Wyoming’s Bighorn Basin, Scott Wing … found fossilized leaves from ancient bean plants that he said had migrated 1,000 miles north from the latitude of Louisiana to escape the heat.

    If polar amplification near the time of the PETM (55 mya) was large, why would bean plants migrate 1,000 miles north because of the heat? Do scientists think that heat was less near the latitude where the foothills now exist in WY, CO and MT than the heat in Louisiana? It seems more likely to me that the the warmth near the PETM resulted in a large increase in sea level again (similar to 90 mya), was what caused the bean plant to migrate northward, not the heat. However, if it was the heat down south that caused the migration, then I question the significance of polar amplification.

    Comment by pat neuman — 28 Aug 2006 @ 11:09 AM

  39. Please excuse the naive question, but given the size of Antarctica, does most of the moisture in the atmosphere precipitate out near the edges of the continent, so that less moisture is available to build snow mass in the interior parts of Antarctica?

    [Response: Yes, that’s right. Take a look here for maps of Antarctic average snowfall. The most-easily understood figures is actually this one. Units are mm/year, I think (!). In any event, obviously much higher at the edges than the interior. -eric]

    Comment by Jeff DeLaune — 28 Aug 2006 @ 11:46 AM

  40. I haven’t seen a reference to the recent op-ed’s out there on the the “tropical Arctic climate” of 55mya. The op ed states that “Study Suggests that Humans not a Major Cause of Global Warming”. See Does anyone know what this study is or why it would have any relevancy to global warming? Thanks, BA

    [Response: We do have a post on the actual results of the original studies in the Eocene in the works (somewhere). But as far as actual relevance to present day changes go – there are none. (But it’s still a fascinating piece of climate history). -gavin]

    Comment by Brian Allen — 28 Aug 2006 @ 1:32 PM

  41. Re# 38
    The issue I was discussing was whether or not the measurements were accurate, not what these measurements show. I did not intend to imply that I was ignoring regional changes, only that I think the TLT product from the analysis by UAH of data derived from the MSU satellite instruments is faulty. I hope you are able to see my GRL paper, as I tried to show where I believe there may be a problem.

    The other side of the question you pose regarding the apparent lack of the projected polar amplification is directly related to the question of whether or not the data accurately represents what is happening over the Antarctic. If the TLT data for the Antarctic showing a cooling trend is wrong and there is actually a warming trend, then that becomes a rather large issue. The data from the ground and sondes do not provide a clear picture, as there are many areas without data. Most of the station data comes from the coastal areas, with only a few mid-continent locations providing long term records. I noted a small warming trend in the TLT during the colder months, as did the study that William Connolley worked on. Take a look back at WC’s post here:

    Comment by Eric Swanson — 28 Aug 2006 @ 1:33 PM

  42. Gavin thanks to your reply to my post in #40. I did see reference to the Paleocene-Eocene Thermal Maximum that implied a doubling or tripling of CO2 and other greenhouse gases contributing to a 10-12C increase in global temperatures. This would seem to support concerns with AGW rather than suggest otherwise. BA

    Comment by Brian Allen — 28 Aug 2006 @ 1:51 PM

  43. re 41. I understand that. Proceeding, in looking at the article by William Connolley (Mar 2006 at RC) as you suggested, I end up following a link back to the article by Cecilia Bitz (Jan 2006) which says the term polar amplification should therefore be reserved to describe the amplification of surface temperature changes. Thus, cooling or no change in surface temperatures in Antarctic in winter, discounting temperature variability and errors in measurement, imply that polar amplification is not taking place in the southern hemisphere. However, surface temperature measurements northern hemisphere (Alaska and Upper Midwest climate station data), suggest that polar amplification is occurring, but average Jul-Aug min temperature data at climate stations in the southern US in 2005 and 2006, and probably Europe in 2003 and 2006, suggest that more than just polar amplification is occurring.

    Comment by pat neuman — 28 Aug 2006 @ 4:23 PM

  44. Re #43

    Climate models as were available some 15-20 years ago showed strong polar amplification due to the snow/sea-ice/ocean albedo feedback. These models tended to be too cold in polar regions, thus the sea-ice extent was too large, extending rather further from the poles compared with the known historical extent. The models also used albedo values for sea-ice which were too large, while that for the ocean was too small, especially in the NH with the high solar zenith angles near the pole. Thus, in the older models, as a little warming melted some sea-ice, there was a large difference in absorbed solar energy by the ocean below. I think the model builders are doing a better job lately, with much better sea-ice models and higher resolutions, which allow more precise representation of the various physical processes.

    It should also be noted that the sea-ice in the Arctic and around the Antarctic are in very different configurations, with the Arctic having an ocean at highest latitudes surrounded by land, while the Antarctic has a continent at highest latitudes surrounded by a very large area of water. The sea-ice cycle in the Arctic leaves a large area of ice at the end of the melt season, while the cycle around the Antarctic results in almost complete melt, except for the ice shelves at the glacier terminations. Most of the low altitude land ice melts in the NH summer, while the Antarctic remains mostly ice covered year round. I think that it should not be a surprise that the two polar regions respond differently to AGW.

    Comment by Eric Swanson — 28 Aug 2006 @ 7:04 PM

  45. re: 44 I understand what you said, that’s helpful information.

    I’ve been wondering if the climate models account for increasing melt rates as the atmosphere becomes more humid. My paper on snowmelt and dewpoints (below) concludes that higher humidity increases melt rates due to latent heat of condensation. During my career with NWS North Central River Forecast Center, I observed faster thaw of ice and snow on days with higher humidity, especially evenings.

    Snowmelt & Dewpoints in Minnesota, Wisconsin, and North Dakota
    September 11, 2003

    Comment by pat neuman — 28 Aug 2006 @ 9:49 PM

  46. Good morning all, just to cheer you up a report in today’s Guardian.

    It is almost Antarctica but not quite : you can look at it as connected.

    Cities in peril as Andean glaciers melt
    Ice sheets expected to last centuries could disappear in 25 years, threatening water supplies

    John Vidal, environment editor
    Tuesday August 29, 2006


    Andean glaciers are melting so fast that some are expected to disappear within 15-25 years, denying major cities water supplies and putting populations and food supplies at risk in Colombia, Peru, Chile, Venezuela, Ecuador, Argentina and Bolivia.
    The Chacaltaya glacier in Bolivia, the source of fresh water for the cities of La Paz and El Alto, is expected to completely melt within 15 years if present trends continue. Mount Huascarán, Peru’s most famous mountain, has lost 1,280 hectares (3,163 acres) of ice, around 40% of the area it covered only 30 years ago. The O’Higgins glacier in Chile has shrunk by nine miles in 100 years and Argentina’s Upsala glacier is losing 14 metres (46ft) a year.

    Although a few glaciers in southern Patagonia are increasing in size, almost all near the tropics are in rapid retreat. Some glaciers in Colombia are now less than 20% of the mass recorded in 1850 and Ecuador could lose half its most important glaciers within 20 years.

    The rate of glacier retreat has shocked scientists, says a report on the effects of global warming in Latin America by 20 UK-based environment and development groups who have drawn on national scientific assessments. Their study says climate change is accelerating the deglaciation phenomenon.

    “The speeding up of the … process is a catastrophic danger,” says Carmen Felipe, president of Peru’s water management institute. In the short term, the president says, it could cause overflows of reservoirs and trigger mudslides, and in the longer term cut water supplies.

    According to the Colombian institute of hydrology, back in 1983 the five major glaciers in El Cocuy national park were expected to last at least 300 years, but measurements taken last year suggest that they may all disappear within 25 years. Meanwhile, the ice sheet on the Ecuadorean volcano Cotopaxi and its glacier has shrunk by 30% since 1976.

    “The [drastic melt] forces people to farm at higher altitudes to grow their crops, adding to deforestation, which in turn undermines water sources and leads to soil erosion and putting the survival of Andean cultures at risk,” says the report by the Working Group on Climate Change and Development, which includes the International Institute for Environment and Development, Christian Aid, Cafod, WWF, Greenpeace and Progressio.

    Their report, Up in Smoke, says snow and rainfall patterns in South America and the Caribbean are becoming less predictable and more extreme. “East of the Andes, rainfall has been increasing since about 1970, accompanied by more destructive, sudden deluges. Meanwhile, the last two hurricane seasons in the Caribbean rim have caused $12bn (£6.3bn) damage to countries other than the US. Tropical storms are expected to become more destructive as climate change intensifies. Climate change models predict more rainfall in eastern South America and less in central and southern Chile with a likelihood of greater and opposite extremes. The 2005 drought in the Amazon basin was probably the worst since records began.”

    Rises in sea level are expected to be especially severe in the region over the next 50 years, with 60 of Latin America’s 77 largest cities located on the coast. The first hurricanes have recently hit south of the equator line in Brazil. “The net effect … is to reduce the capacity of natural ecosystems to act as buffers against extreme weather.”

    “What we are seeing are many more negative and cumulative impacts. The larger the rate of [climate] change, the more the adverse effects predominate. Climate change is set to turn an already rough ride into an impossible one,” says the report, which adds that the impact of climate change is “hugely” magnified by existing environmental abuse.

    It proposes that Latin American governments do not repeat the mistakes made by past and present North American and European governments. Several countries in the region are proposing a new generation of mega dams which would displace thousands more people and destroy vast areas of the Brazilian Amazon. The new importance of soya, both as a food and biofuel crop, could also devastate the environment, leading to a battle for land between companies.

    Large-scale coal, oil, and copper mining not only threaten fragile environments, says the report, but in some cases can physically endanger remaining glaciers and greatly increase climate changing emissions. “The Pascua Lama project on the borders of Chile and Argentina intends to move three glaciers that cover gold, silver and copper deposits. The glaciers sustain the mountain and valley ecosystems and there are fears that toxic wastes used in the mining will contaminate land and water,” says the report.

    Yesterday, the groups called on rich countries to urgently reduce greenhouse gas emissions and proposed that Latin America and the Caribbean governments be helped to reduce their vulnerability to extreme weather.

    “The only option we have, apart from demanding that developed countries take responsibility for the damages that climate change is causing, is to try to neutralise the adverse impacts that are [already] upon us. It is time to rethink the model of international aid,” said Juan Maldonado, former Colombian environment minister and president of the UN convention on biological diversity.


    “With each new flood, drought or hurricane in Latin America, precious gains in poverty reduction are lost. Extreme weather is set to cause massive loss of life in developing countries throughout the region. The international community must invest more in helping poor communities cope with the effect of climate change,” said Simon Trace, chief executive of Practical Action.

    The world’s many thousands of glaciers have been stable or in slow retreat for more than 100 years but since around 1980 they have mostly been retreating drastically. The fastest decline is in the Himalayas, the Arctic, the Alps, the Rockies and the tropics. Most glaciologists believe this natural phenomenon is being accelerated by global warming. The effects of glacier melt are expected to be severe. Hundreds of millions of people in Asia and Latin America are dependent on glacier water. A reduction in runoff will affect the ability to irrigate crops and will reduce summer stream flows to keep dams and reservoirs replenished. In Norway, the Alps, and the Pacific north-west, glacier runoff is important for hydropower. If all the ice on the polar icecaps were to melt, the oceans would rise an estimated 70 metres (230ft). But even a small melt will affect coastal life.

    Guardian Unlimited © Guardian Newspapers Limited 2006

    Comment by Eachran — 29 Aug 2006 @ 4:36 AM

  47. Re #44 Eric, you seem to be saying that the models were overestimating the rate of sea-ice melting in the Arctic but are now correctly estimating a slower melt. In fact the Arctic sea-ice melt is accelerating see and I know of no models which predict that. Do you have any references?

    You have given a very good description of the difference between Arctic and Antarctic conditions. Using that, and what Pat wrote about the rate of the melting glaciers depending on the dew point, then it is possible to explain polar amplification and why it does not apply in the Antarctic yet. Water vapour is the clue. By condensing on the ice, it gives up its latent heat and so melts two water molecules for every one molecule that condenses. The greenhouse effect of water vapour, and the insulating effect of more clouds also helps to increase the melt rate. Once the ice starts melting it produces water and water vapour so causing a positive feedback. So long as the surface of the Antarctic ice is too cold to melt because its altitude and latitude is too high, then it will survive, especially since the polar vortex is bringing down dry air from the stratosphere.

    Even with global temperatures higher than today’s, then it is unlikely that the Antarctic ice will melt completly since it started growing in the Miocene when CO2 and tempertures were higher than today. Because it is self sustaining, then temperatures and or CO2 levels will have to rise above those of the Miocene for melting to commence at the south pole. OTOH, melting has started at lower latitudes on the Penisular, and this melt could spread to the West Antarctic ice sheet which it seems has collapsed into the sea before :-(

    Anyway that’s my 2 cents worth.

    Comment by Alastair McDonald — 29 Aug 2006 @ 11:06 AM

  48. Re #47 I was of course replying to Eric Swanson, although I would be even more interested in any comments Eric Steig might care to make. Sorry for any confustion.

    [Response: Alistair: I will respond at some point; Eric Swanson has raised a bunch of interesting points but it’ll take me a while to digest the discussion he has started.
    Best — Eric Steig]

    Comment by Alastair McDonald — 29 Aug 2006 @ 12:22 PM

  49. #47, Alastair, My thinking likewise, its more the edges of Antarctica that need to be looked at. With interaction between warmer low altitude air and the standing ice walls or slopes. Since coastal stations have reported a warming, it is only logical that some degradation must be found near the sea.

    Comment by wayne davidson — 29 Aug 2006 @ 2:01 PM

  50. Comments on Steffen Cristensen remarks #15 by Gerd Wendler

    In our paper (Hartmann and Wendler ( the sudden warming which occurred in 1976 is being discussed and related to the shift in the PDO. We compared the 25 years prior to this event to the 25 years thereafter. We used all first order climatological stations in Alaska operating for the time period, hence, the best data available taken by professional meteorologists with calibrations carried out regularly. With the exception of the Arctic, which is based on a single station (Barrow), a fairly flat temperature trend is observed for all other regions. Nowhere we state that the mean, which we do not present in our Figure 5, is the mean for the land surface of Alaska.

    Christensen’s critique is arbitrary in that using only a 10 year base (1977-87) compared it to a 5 year mean temperature (2001-2006) at a different time period is quite dubious. Why do we have 30-year means in climatology? Choosing short term temperature intervals says little about trends as the annual variability is large.

    Finally, I agree with Christensen insofar that we had some warm periods since 2001. For example, the summer of 2004 was the warmest ever observed in Fairbanks, and 2005 was the 3rd warmest. On our website we have information on trends for the period 1949 to 2005 and 1977 to 2005 ( Note that for the period 1977 to 2005 there has been a slight increase in mean annual temperature (taken as the average of the first order weather stations), but some stations show a cooling.

    Comment by Gerd Wendler — 29 Aug 2006 @ 6:32 PM

  51. For anyone interested, here is a link to two visible satellite pictures of the sea ice in the Beafort Sea on July 25, 2006 and 2005. The sea ice is still right up to the coast and Barrow Alaska is still ice-locked (only one month to go in the melt season.) The 2006 sea ice extent is larger at this particular location than 2005 for example.

    Comment by Jeff Weffer — 30 Aug 2006 @ 8:51 AM

  52. Hello, Gerd (#50). Many thanks for the comments! I have to humbly apologize to you, in that my comment (#15) appears to have been misinterpreted.
    First, using data accumulated since your paper in argument is a little unjust, as your paper has no opportunity to respond. It’s new data after all. Some theories don’t work out. Some do. It’s still worth writing a paper about them, based on what you know so far – that’s how science advances. Through strawmen.
    Second, my comment about the mean temperature in Alaska was directed at Bryan’s comment (#3) where he said, “there has also been a slight average cooling trend in Alaska.” That sounded to me like a comment about the average temperature in Alaska, which you didn’t discuss in your paper. As you know, the trends are different for different regions of Alaska – on the Arctic Shore of Alaska (Barrow) the trend is strongly upwards; in Nome, Anchorage and Kodiak, the trend is more curvilinear; and Fairbanks and Juneau are more linear, but modest in slope. Different warming regimes seem to be involved, which is mentioned in your paper. Of course, it’s early days yet. Indeed, the curvilinear trends suggest that more warming is going on in the most recent period. One way to read the Alaska story might be “warm temperatures from 1977-86; cooling in 1987-2000; warming again in 2001-2010”. Only time will tell.
    Third, my choice of time windows for demonstrating warming in Alaska had two purposes – first, to show that by choosing some of the free parameters in climate appropriately, you can make whatever story you like seem true. Second, to compare against the more recent climate (2001-2006) considers only data used since the last date of your paper, as a quasi-independent test of whether the analysis holds up to the more recent data. I chose 1977-1987 as a starting point so that it would be reflective of the conditions at the start of the “cooling period” mentioned by Bryan.
    Finally, I thank you for your intellectual honesty in admitting that the recent temperatures in Alaska have been quite high. That fact makes my chart of #15 possible.

    By the way, do you know why several of the climatological stations in Alaska are being retired? The data center at NASA/GISS ( ) reports that the stations at Nome and Kodiak have stopped getting new data as of 2004, and many other smaller stations since 2001. I find this an extremely distressing trend, since the ability of the climate researcher community to understand the climate is imperiled by less data. We need more data now, not less!

    Finally, to the moderators – my apologies for talking about Alaska again! I, for one, would love to read an article about the PDO and how it relates to global climate change. Alaska is a topical subject as well, since the North Shore is the bit of the U.S. that is warming the most strongly, hence the most relevant window into climate change for many Americans – most of whom do not own a passport. I know that here in Canada, our public didn’t start to get the picture until many documentaries on and interviews by the CBC in the High North. Now understanding is more-or-less universal outside of the Oil Patch and regions West.

    Comment by Steffen Christensen — 30 Aug 2006 @ 8:53 AM

  53. RE #51

    Jeff, your link shows the Barrow coast on July 25 (date photo acquired).

    You do not know today’s condition of the Barrow shore line until you look at images (ca) August 29, 2006.

    [and Barrow Alaska is still ice-locked (only one month to go in the melt season.]

    And, such images are available today.

    Comment by John L. McCormick — 30 Aug 2006 @ 10:21 AM

  54. Re #51 & 53 – Bob Grumbine of NOAA produces sea ice maps daily for both the Arctic and Antarctic. He has been archiving them since 1st July 1998, not long, and I have produced a couple of web pages where any three days of the maps can be compared.

    The Arctic sea ice maps are at and you can see that today’s shows that the ice is still close to the shore of north Alaska, but this is unusual for this time of year. You can check this by clicking the back year button. However, it is just about obvious that the complete area of the Arctic pack of ice is less than it has been on this day of the year for any year since and including 1997. By comparing three ice maps equally widely spaced in time, the trend is fairly obvious.

    In contrast, today’s Antarctic sea ice maps show no observable trend. See . One reason is that the Arctic ice is close to its seasonal minimum, whereas the Antarctic ice is close to it seasonal maximum. The maximum seems to remain fixed, even when the minimum decreases, although the Arctic maximum is now starting to show a small retreat. See which shows the trend in Arctic ice for the month of March, close to the seasonal maximum.

    What is really interesting is that although the Arctic minimum (September) is decreasing strongly; see Neither the Antactic maximum (September) nor the minimum (March) shows any sign of retreat.

    This sort of ties in with the message that the Antarctic snow is not changing, and nor is the Antarctic climate.

    Comment by Alastair McDonald — 30 Aug 2006 @ 12:10 PM

  55. RE #54

    Alastair, thank you for the links.

    I use Dr. William Chapman’s CRYOSPHERE TODAY archive at:

    to view satellite images of Arctic ice extent. Scrolling down to Aug 29, 2006, I get a very clear impression that ice is quite a distance from the Barrow shore.

    Comment by John L. McCormick — 30 Aug 2006 @ 12:40 PM

  56. The sea ice has left Barrow now but the point is that on July 25th, which is more-or-less the heighth of the summer, there is still pack ice at Barrow. Melting will occur and Barrow will be ice-free through August but then it will start freezing back in September.

    The point is, that Barrow is only ice-free for 1 and half months throughout the year. Media reports make it seem as though the entire polar ice cap is melting.

    Here is a live webcam of the Barrow coast (I didn’t link to it in my first post because it was still night-time.) Today in the light of day, there is still small pieces of ice floating out on the ocean.

    Comment by Jeff Weffer — 30 Aug 2006 @ 2:37 PM

  57. Jeff, thanks for that great link to the Barrow shore line. I bookmarked it.

    I disagree with your opinion of the media reports. Nothing I have seen or read indicates the entire polar ice cap is melting. Rather, we know it is melting everywhere along the margins and interior. And, scientists having many years of observation-time logged, project a possible complete meltback by mid-century. I guess you have to be there to have that view.

    Comment by John L. McCormick — 30 Aug 2006 @ 3:06 PM

  58. I don’t know if this has any relevancy, but in the film IS IT HOT ENOUGH FOR YOU? (1989) a Banglore climate scientist explained that the ocean completes with the land for precipitation, and if the ocean warms (e.g., due to global warming), it could draw the monsoon rains (needed for agri) out over the oceans & precipitate there, causing droughts in India.

    Could the same happen re Antarctica? I know it’s a huge continent, bigger than the S. Asian subcontinent, so that might make a difference….as well as the typical wind patterns there, etc.

    In other words, even if we do get more precip (snow) with warming in Antarctica, could a large portion precip over the surrounding oceans, rather than land…

    Comment by Lynn Vincentnathan — 30 Aug 2006 @ 3:11 PM

  59. After looking over the two papers, it certainly appears that Monoghan et. al have more comprehensive data coverage than Davis et. al; the regional variations in the East Antarctic seem more detailed in Monoghan et. al. See comment #1. It also seems that there is general agreement that the West Antarctic Ice Sheet is thinning; see the Perspective by David Vaughan on Davis et. al:;308/5730/1877

    So, the absorption of heat by the Southern Ocean on one hand would be expected to increase local atmospheric moisture, but the question is: Does that moisture makes its way into the East Antarctic Interior? Again, see comment #1 on the warmer=wetter? issue, and the need for atmospheric-ocean modelling.

    It is also worth referencing Michael Oppenheimer’s guest post on the topic of modelling ice sheets:

    “The limitations of ice sheet models were revealed starkly by the collapse of the northern sections of the Larson B ice shelf in 1998 and 2002. Glaciers bounded by the landward edge of the ice shelf accelerated toward the sea while glaciers bounded by the more southerly section of the ice shelf, which remained intact, didnâ��t. Apparently, backpressure on glaciers from the abutting ice shelf provides a significant portion of the restraining forces keeping land-based ice in place, at least in some instances. The recent behavior of glaciers farther south in West Antarctica, and in Greenland, points to a similar dynamical response to ice-shelf fragmentation.
    Many glaciologists regarded these observations as a clear test of the ability of ice sheet models to forecast dynamical changes in a warming ice sheet, a test the models failed.”

    To sum that up, there is limited data regarding what is going on in the Antarctic, and the ice sheet models haven’t predicted the recent dynamic changes. I can’t help but recall the rather vehement and derogatory statements that certain geoscientists were making about the prospects of rapid climate change some 5 yrs ago, based on the stability of the ice sheets. That’s all past history, yes? When the ice sheet dynamics are combined with the CO2 feed-forward effects of the melting permafrost and the increased wildfires in the Amazon and Noth America, it sure seems like rapid climate change is on the horizon. What will the end result of all this be?

    So, to expand the timeframe of this thread, which relates to recent climate change in the Antarctic: There are a few other recent reports that are helpful in understanding the dynamics of the West and East Antarctic Ice Sheet (WAIS and EAIS). The most recent cycle of global glaciation was initiated some 3 million years ago, when sea levels were higher (25m and 35 +/- 18m from coastal terraces and Pacific atolls, see Raymo et al below). The sum sea level equivalent stored in the Greenland and WAIS is 12-14m, so the EAIS must have been involved in sea levels in the mid-Pliocene, 3.3-3.0 million years ago, when temps were some 3 C higher then today. This period is of interest because that’s the temperature increase climate models predict, so future climate might look a lot like the mid-Pliocene. If this is the endpoint, how fast will we get there?

    The following papers address the issue of understanding why the 43,000 year glacial cycle (3-1 mya) transitioned to a 100,000 year cycle (1 mya-Holocene). Raymo et. al describes a transition from a terrestrial melting margin of the EAIS to a glaciomarine ice calving margin that coincides with the glacial cycle transition, while Huybers describes better methods of estimating Milankovitch-driven insolation effects (which relate primarily to the 3-1 mya period). Currently, >90% of Antarctic ice margins are marine; if sea level rise continues then the grounding margins will retreat, resulting in accelerated ice shelf disintegration, and eventual production of a terrestrial margin for the EAIS. Of course, the timescale of this is of great concern – 100 years? 1000 years? Eventually, the EAIS will start behaving like the Greenland Ice Sheet is today if warming trends continue as predicted. The EAIS is equivalent to 54-55m of sea level rise.

    What I’m reading in all this is that the last 5 years or so of data are indicating that the ice sheets are far more dynamic than anyone suspected, and the ice sheet models need to be adjusted to account for this in order to produce realistic climate predictions. The eventual predicted temp rise of 3C might be correct, but the response time of the climate system might be underestimated.

    Raymo et. al:

    Finally, what processes might set the upper bound on atmospheric CO2 in the warming world that we are entering? Here’s a guess: reduced thermohaline circulation due to less bottom water formation in the polar regions might set up an ocean system in which marine photosynthetically produced organic carbon is exported to the seabed instead of being recirculated back to atmospheric CO2. I suppose there would be evidence of this in seafloor sediment %organic carbon records from 3 Mya if this were true. This would prevent the ‘global runaway greenhouse’ and also links the climate system to biosphere activity – but that is assuming that all of the remaining fossil fuels in the ground are not converted to atmospheric CO2.

    Comment by ike solem — 30 Aug 2006 @ 4:16 PM

  60. Re #56, #57. Leffingwell and Mikkelsen surveyed the north slope by steam ship in 1907, stopping in Barrow, before sailing to Flaxman Island. I also believe that Alfred P. Brooks surveyed the coast by ship in 1904. It was common knowledge among these early explorers that one could spend a complete summer field season anchored off the coast, and sail out safely before winter. This might come as a surprise to some readers.

    Comment by Bryan Sralla — 30 Aug 2006 @ 5:30 PM

  61. RE#59,
    Sorry, I meant to say that the response time of the climate system might currently be overestimated due to the dynamic nature of the ice sheets.

    The notion of a photosynthetically driven ‘carbon-export pump’ in the global oceans has been around a while, for example see:
    Upper Ocean Carbon Export and
    the Biological Pump
    Hugh W. Ducklow, Deborah K. Steinberg
    Oceanography, Volume 14, Number 4, 2001

    Comment by ike solem — 30 Aug 2006 @ 10:48 PM

  62. In the last 2 years that I have been subscribing to Newscientist, I have seen lots of articles that headlines like ‘Glaciers are retreating worldwide, ‘Greenland glaciers are growing’, ‘Greenland melt is accelerating’ ‘Antarctic ice melt defies warming theories’, ‘Antarctic ice growing’ etc etc. All seem to conflict with eachother but all are evidence for climate change. I even read recently that a Pakistani glacier was growing as a result of climate change!

    No consistency or there doesn’t seem to be to the layman. Therefore it just gets ignored and fuels the apathy.

    Comment by Russ Hayley — 31 Aug 2006 @ 4:14 AM

  63. Off topic, but comments are closed on the post where I entered, via a link from cryoblog, to a comment to The Greenland Ice

    [… but is computationally very expensive and cannot yet routinely be done in 3-dimensional ice sheet modeling. –eric]

    I’d appreciate some details on the computational problem. Email is fine, or a follow-up comment. ebw at abenaki dot wabanaki dot net

    Comment by eric brunner-williams — 31 Aug 2006 @ 10:39 AM

  64. First of all, thank you to Gerd Wendler for adding his clarifying remarks. I have a few to add myself. In the interest of full disclosure, I am no longer at the Alaska Climate Research Center having relocated to the lower 48, but obviously I still have an interest in my and Gerd’s work and its interpretation.

    In regards to Comment #15: First off, the climate zones are not treated as equal-weight in trying to determine a “statewide” average temperature. In all reality, we prefer to work in the climate zones in the interest of trying to get away from blanket statements of averages and changes over an area like Alaska, with its myriad of climate influences, as well as its sheer size. That is why throughout the paper, we took great care to segregate the different ways in which each zone and each season (and in some cased, each month) was different prior to and subsequent to the shift.

    Also, in reply to Comment #15: “Picking an arbitrary high-water mark, here 1976, raises the possibility of a well-known statistical phenomenon of regression towards the mean. You can always make it look like the temperature is cooling by choosing a nice hot year to start your clock from – and only consider years subsequent to that.”

    I agree fully that cherry-picking of data and starting linear regressions in convienient years can yield misleading trends. Again, that was one of the motivating factors for the paper, to demonstrate that choosing to work ONLY in linear trends can yield “false-positives” so to speak.

    But contrary to your contention, 1976 WAS NOT an arbitrary choice on our part. It was a choice based in the real, physical and observed changes that occurred in the North Pacific and Alaska that year.

    In reply to Comments #20 and #21: Looking at a long-term linear trend (1950 to present) of various stations in Alaska does indeed show significant warming in most seasons. However, one motivation of the J of Climate paper was to see just how significant a part the “step-wise” jump observed in 1976 plays in those warming trends, which are cited quite often to explain things such as settling permafrost, retreating glaciers, etc.

    While it is mentioned in the comments that our paper does show that most of the regions in Alaska (with the obvious exception of the Arctic region) cooled from 1976-2001, I would also like to point out that all of the 6 regions in the study demonstrated cooling PRIOR to 1976 as well (Hartmann and Wendler, Table 9).

    As we state in our conclusion: “…the ues of trend line analysis in climate change research depends greatly upon the time period studied, and results can be biased when an abrupt climate change is observed during the study period. It has been demonstrated that the sudden changes of 1976 observed in Alaska have a profound effect on temperature trends.”

    The overall point I strive to make in all of this is that there has to be a more specific approach to looking at temperature change than linear analysis, seeing as how in the case of the last 60 or so years in Alaska, that linear analysis seems to be heavily influenced by non-linear changes.

    I welcome any and all to contact me if you have questions.

    Comment by Brian Hartmann — 31 Aug 2006 @ 1:13 PM

  65. Shishmaref, Alaska is falling into the sea.

    Yea sur it is. The village is on a barrier bar and the bar is moving to the west. The village was a seasonal fish camp and a perment village should have never been build there. The location of the village was a poiltical decsion and the geologist who spoke up at the time were ignored. The rise and fall of sea level have nothing to do with the village “falling in to the sea”. The same is true for Kilivina

    Ps ice on the puddle this morning. at 66N

    Comment by Jeff Huber — 31 Aug 2006 @ 4:22 PM

  66. Re: #60 sorry for the typo. That should be Alfred H. Brooks for all who are interested.

    Comment by Bryan Sralla — 31 Aug 2006 @ 4:35 PM

  67. Re my #58 post, if precip (snow in Antarctica) does increase w/ warming, could a large portion of the precip (snow) be drawn over the warming oceans near Antarctica (which then would not help slow sea rise)?

    When I don’t get an answer, I assume scientists don’t really know one way or the other….

    [Response: It’s not so much a matter of “not knowing” but of having to answer an ill-posed question. I’ll get back to it with a longer answer, but the short answer is that if the ocean warms “near” Antarctica, it is going to result in more precipitation in Antarctica (as well as as over those warmer seas. –eric]

    Comment by Lynn Vincentnathan — 31 Aug 2006 @ 9:11 PM

  68. Re coastal erosion and Alaska, my understanding has always been that the primary cause is melting permafrost rather than rising sea levels.

    Comment by Coby — 1 Sep 2006 @ 6:05 PM

  69. The villages are on a barrier bar see link,-164.003906&spn=2.038696,7.404785&t=k&om=1
    Shisis located in the western part of the photo on the barrier bar near the small lagoon. Kilivina is on the western tip of the barrier bar near the white spot at the top of the photo.

    Comment by Jeff Huber — 3 Sep 2006 @ 10:51 AM

  70. Re:#32. You say that there is now less natural variability *assuming* AGW is taking place. Just as an exercise, assume AGW were *not* happening. Could the previous variability possibly show that current temps are in the range of natural variability? Do *any* climate reconstructions of the previous 5k years show trends similar to the current trends over similar time-scales? It’s just that it seems to me that we are observing changes with much greater accuracy now than any reconstruction can possibly provide, and calling it unprecedented – how can it be labelled as “unprecedented” under such conditions, with *no* (that I’ve seen anyway) conditionals attached (such as “it appears to be…”, “to the best we are able to ascertain…”). Perhaps this sort of thing *is* published in peer reviewed papers, but it most certainly is *not* in the mass media reports.

    The bottom lime is this: hard evidence, it seems to me, is sorely lacking in this debate, and some of the claims that have been made (on both sides) are, when investigated thoroughly, unsubstantiated.

    Regardless of whether you “believe” in AGW or not, we should *all* be bowing to the facts and acknowledging the uncertainties – if you promote conjecture as fact, it’s extremely easy to come “unstuck”, and even if you are actually correct, you will be dismissed as a crank. If anyone here truely believes that we humans are in for a hard time because of our lack of forsight (in terms of climate, please!) and that natural variability has *no* role in curent climate trends, than I think you are somewhat deluded!

    Comment by unconvinced — 4 Sep 2006 @ 7:42 PM

  71. Re: #70

    Believe it or not, we’re actually *glad* to meet skeptics whose doubt is based in reason.

    I’ll try to answer some of your questions, but I caution you that I’m not a climate scientist. I’m a mathematician, I specialize in the statistical analysis of time series, so on that topic I can speak authoritatively; but on other issues related to AGW, to paraphrase Will Rogers, I only know what I read in the peer-reviewed papers — and on RealClimate.

    Re:#32. You say that there is now less natural variability *assuming* AGW is taking place. Just as an exercise, assume AGW were *not* happening. Could the previous variability possibly show that current temps are in the range of natural variability?

    Actually, when statistical studies search for trends in the data, that’s *exactly* the assumption which is made: that there is no trend, only natural variability. Only when that hypothesis can be rejected as too unlikely to be believed, is the idea of a trend considered to be statistically significant.

    All available information about natural variability indicates that it cannot explain the current temperatures.

    Do *any* climate reconstructions of the previous 5k years show trends similar to the current trends over similar time-scales?

    None. However, there aren’t really any climate reconstructions for the last 5K years with anything near enough precision to perform a meaningful comparison. The furthest back in time that such reconstructions have been attempted with sufficient precision is 2K years.

    A recent study by the National Academy of Sciences addressed the question of the correctness of such reconstructions. They concluded that there is “high confidence” in reconstructions for the last 400 years, “less confidence” in reconstructions for the last 900 years, and “low confidence” in those extending further back in time. Despite low confidence in the most extensive reconstructions, all reconstructions were described as “plausible.”

    It’s just that it seems to me that we are observing changes with much greater accuracy now than any reconstruction can possibly provide, and calling it unprecedented – how can it be labelled as “unprecedented” under such conditions, with *no* (that I’ve seen anyway) conditionals attached (such as “it appears to be…”, “to the best we are able to ascertain…”). Perhaps this sort of thing *is* published in peer reviewed papers, but it most certainly is *not* in the mass media reports.

    Those are exactly the “conditionals” which are replete in the peer-reviewed literature. In fact, the use of such qualifications in the IPCC TAR (Intergovernmental Panel on Climate Change, Third Assessment Report) was used as an attack point by denialists, who even referred to such language as “weasel words,” implying that it was cowardice to state conclusions in those terms. Sometimes, in the court of public opinion, it seems as though you’re “damned if you do, damned if you don’t.” Omit such qualifiers, you’re accused of unrealistic confidence, include them and you’re accused of “weasel words.”

    The bottom lime is this: hard evidence, it seems to me, is sorely lacking in this debate, …

    It seems to me that there’s a great deal of very hard evidence. Keep reading this blog and you’ll see more and more of it.

    … and some of the claims that have been made (on both sides) are, when investigated thoroughly, unsubstantiated.

    I’m aware of far too many unsubstantiated claims on the “no-AGW” side of the debate; can you be more specific about unsubstantiated claims on the other side?

    Regardless of whether you “believe” in AGW or not, we should *all* be bowing to the facts and acknowledging the uncertainties – if you promote conjecture as fact, it’s extremely easy to come “unstuck”, and even if you are actually correct, you will be dismissed as a crank.

    On this, we agree.

    If anyone here truely believes that we humans are in for a hard time because of our lack of forsight (in terms of climate, please!) and that natural variability has *no* role in curent climate trends, than I think you are somewhat deluded!

    I truly believe it. My belief began when I became highly *skeptical* about AGW, so I decided to investigate in detail. I’m not a climate scientist, but I am a mathematician, so you have to get up pretty early in the morning to fool me with numbers. My researches have convinced me that AGW is very real and very dangerous — and my belief is based on hard facts.

    [Response:Grant, all very nicely said. I would add that NOBODY believes that natrual variabilty has *no* role in current climate trends. This is a strawman argument. -eric]

    Comment by Grant — 4 Sep 2006 @ 10:15 PM

  72. Just noting that the sea ice is already freezing back in Barrow, Alaska.

    [Response:Notwithstanding your valid point that the media tend to over-state the amount of ice that is melting, it IS getting into fall at the moment. Some parts of climate are eminently predictable! See here for a bit of amusement on this subject. NOTE the date of the article please!–eric]

    Comment by Jeff Weffer — 5 Sep 2006 @ 9:01 PM

  73. Re: response to #72

    Thanks for the link! I’d missed that the first time out. I got a real good belly laugh out of it.

    Comment by Grant — 7 Sep 2006 @ 12:49 PM

Sorry, the comment form is closed at this time.

Close this window.

0.245 Powered by WordPress