The lag between temperature and CO2. (Gore’s got it right.)

The record of temperature shown in the ice core is not a global record. It is a record of local Antarctic temperature change. The rest of the globe does indeed parallel the polar changes closely, but the global mean temperature changes are smaller. While we don’t know precisely why the CO2 changes occur on long timescales, (the mechanisms are well understood; the details are not), we do know that explaining the magnitude of global temperature change requires including CO2. This is a critical point. We cannot explain the temperature observations without CO2. But CO2 does not explain all of the change, and the relationship between temperature and CO2 is therefore by no means linear. That is, a given amount of CO2 increase as measured in the ice cores need not necessarily correspond with a certain amount of temperature increase. Gore shows the strong parallel relationship between the temperature and CO2 data from the ice cores, and then illustrates where the CO2 is now (384 ppm), leaving the viewer’s eye to extrapolate the temperature curve upwards in parallel with the rising CO2. Gore doesn’t actually make the mistake of drawing the temperature curve, but the implication is obvious: temperatures are going to go up a lot. But as illustrated in the figure below, simply extrapolating this correlation forward in time puts the Antarctic temperature in the near future somewhere upwards of 10 degrees Celsius warmer than present — rather at the extreme end of the vast majority of projections (as we have discussed here).

Global average temperature is lower during glacial periods for two primary reasons:

1) there was only about 190 ppm CO2 in the atmosphere, and other major greenhouse gases (CH4 and N2O) were also lower

2) the earth surface was more reflective, due to the presence of lots of ice and snow on land, and lots more sea ice than today (that is, the albedo was higher).

As very nicely discussed by Jim Hansen in his recent Scientific American article, the second of these two influences is the larger, accounting for about 2/3 of the total radiative forcing. CO2 and other greenhouse gases account for the other 1/3. Again, this was all pretty well known in 1990, at the time of the Lorius et al. paper cited above.

What Gore should have done is extrapolated the temperature curve according this the appropriate scaling — with CO2 accounting for about 1/3 of the total change — instead of letting the audience do it by eye. Had he done so, he would have drawn a line that went up only 1/3 of the distance implied by the simple correlation with CO2 shown by the ice core record. This would have left the impression that equilibrium warming of Antarctica due to doubled CO2 concentrations should be about 3 °C, in very good agreement with what is predicted by the state-of-the-art climate models. (It is to be noted that the same models predict a significant delay until equilibrium is reached, due to the large heat capacity of the Southern ocean. This is in very good agreement with the data, which show very modest warming over Antarctica in the last 100 years). Then, if you scale the Antarctic temperature change to a global temperature change, then the global climate sensitivity to a doubling of CO2 becomes 2-3 degrees C, perfectly in line with the climate sensitivity given by IPCC (and known from Arrhenius’s calculations more than 100 years ago).

In summary, the ice core data in no way contradict our understanding of the relationship between CO2 and temperature, and there is nothing fundamentally wrong with what Gore says in the film. Indeed, Gore could have used the ice core data to make an additional and stronger point, which is that these data provide a nice independent test of climate sensitivity, which gives a result in excellent agreement with results from models.

Page 3 of 5 | Previous page | Next page