Hansen’s 1988 projections

The results are shown in the figure. I have deliberately not included the volcanic forcing in either the observed or projected values since that is a random element – scenarios B and C didn’t do badly since Pinatubo went off in 1991, rather than the assumed 1995 – but getting volcanic eruptions right is not the main point here. I show three variations of the ‘observed’ forcings – the first which includes all the forcings (except volcanic) i.e. including solar, aerosol effects, ozone and the like, many aspects of which were not as clearly understood in 1984. For comparison, I also show the forcings without solar effects (to demonstrate the relatively unimportant role solar plays on these timescales), and one which just includes the forcing from the well-mixed greenhouse gases. The last is probably the best one to compare to the scenarios, since they only consisted of projections of the WM-GHGs. All of the forcing data has been offset to have a 1984 start point.

Regardless of which variation one chooses, the scenario closest to the observations is clearly Scenario B. The difference in scenario B compared to any of the variations is around 0.1 W/m2 – around a 10% overestimate (compared to > 50% overestimate for scenario A, and a > 25% underestimate for scenario C). The overestimate in B compared to the best estimate of the total forcings is more like 5%. Given the uncertainties in the observed forcings, this is about as good as can be reasonably expected. As an aside, the match without including the efficacy factors is even better.

What about the modelled impacts?

Most of the focus has been on the global mean temperature trend in the models and observations (it would certainly be worthwhile to look at some more subtle metrics – rainfall, latitudinal temperature gradients, Hadley circulation etc. but that’s beyond the scope of this post). However, there are a number of subtleties here as well. Firstly, what is the best estimate of the global mean surface air temperature anomaly? GISS produces two estimates – the met station index (which does not cover a lot of the oceans), and a land-ocean index (which uses satellite ocean temperature changes in addition to the met stations). The former is likely to overestimate the true global surface air temperature trend (since the oceans do not warm as fast as the land), while the latter may underestimate the true trend, since the air temperature over the ocean is predicted to rise at a slightly higher rate than the ocean temperature. In Hansen’s 2006 paper, he uses both and suggests the true answer lies in between. For our purposes, you will see it doesn’t matter much.

As mentioned above, with a single realisation, there is going to be an amount of weather noise that has nothing to do with the forcings. In these simulations, this noise component has a standard deviation of around 0.1 deg C in the annual mean. That is, if the models had been run using a slightly different initial condition so that the weather was different, the difference in the two runs’ mean temperature in any one year would have a standard deviation of about 0.14 deg C., but the long term trends would be similar. Thus, comparing specific years is very prone to differences due to the noise, while looking at the trends is more robust.

From 1984 to 2006, the trends in the two observational datasets are 0.24+/- 0.07 and 0.21 +/- 0.06 deg C/decade, where the error bars (2\sigma ) are the derived from the linear fit. The ‘true’ error bars should be slightly larger given the uncertainty in the annual estimates themselves. For the model simulations, the trends are for Scenario A: 0.39+/-0.05 deg C/decade, Scenario B: 0.24+/- 0.06 deg C/decade and Scenario C: 0.24 +/- 0.05 deg C/decade.

Page 2 of 3 | Previous page | Next page