The debate is just beginning — on the Cretaceous!

The Cretaceous is the time period from 145 million years ago up to the demise of the dinosaurs about 65 million years ago. The Eocene is a more recent period, from 56 million years ago to 34 million years ago. In between is the Paleocene, which is generally somewhat cooler than the late Cretaceous or mid Eocene. It has long been known that the polar climate — particularly the Arctic climate — was very different from today’s. Many lines of evidence indicate temperatures well above freezing, with little or no permanent land ice and infrequent or absent sea ice. Lemurs could live in Spitzbergen, and crocodiles on Hudson Bay, to name a few examples. Most evidence also points to an absence of ice in Antarctica as well. These Hothouse (or Super Greenhouse) climates have much warmer polar regions than is the case for today’s climate, and winters were evidently very mild. These hothouse climates are idealized as having been almost completely free of significant ice sheets on land and sea ice cover in the ocean. Hothouse climates pose a challenge to our understanding of climate in general, but more particularly they serve as a critical clue as to what surprises a high-CO2 world might have in store for us.

This is so because, at present, the only viable theory for Hothouse climates is that they come about as a result of elevated CO2 concentrations, which in turn are due to long term changes in the Earth’s carbon cycle. The CO2 theory has many problems, some of which I’ll discuss below, but no theory without elevated CO2 has been able to even come close to accounting for the Hothouse states. These climates would be just dandy as a natural test of the Earth’s sensitivity to long lived greenhouse gas concentrations were it not for one nasty fact: it is very, very difficult to get an accurate idea of how high the CO2 concentrations were so far back in time (see Crowley and Berner or Broadly Misleading on RC). For example, estimates for the Eocene range from values similar to modern CO2 concentrations all the way up to 15 times pre-industrial CO2. This unpleasantly large range represents uncertainties in the proxies used to estimate CO2 in the distant past. Various general circulation models can achieve largely ice-free polar conditions with CO2 between 4 and 8 times present concentrations, though even at those levels there are difficulties in accounting for the mildness of the winters. And up until recently it was thought that the tropical temperatures in such simulations were far warmer than reality — but more about that anon.

In the past few years there has been a real shake-up in the conception of what hothouse climates are like. First, it was found that the Tropical regions in hothouse climates are not tightly thermostatted as had been previously thought. Prior indications of a cool tropics turned out to be an artifact of alteration of the chemistry of marine sediments after they were deposited — a nightmare known as diagenesis to paleoceanographers. The tropics are actually quite a bit warmer than today’s tropics. For example, the Eocene tropical ocean may have been as warm as 35C, as compared to about 29C today. The upward revision of tropical temperatures is quite a good thing for the CO2 theory, since it removes a good part of the “low gradient” problem, wherein models were thought to systematically exaggerate the pole to equator temperature gradient.

So far, so good. But then, just last year through heroic efforts involving a nuclear icebreaker, a conventional icebreaker and an icebreaking drill-ship. a deep-time sediment core was recovered from the Arctic ocean. The results, which came out in a series of papers in Nature (here,here and here) were startling. At times the Arctic was practically a freshwater lake, indicating some quite dramatic changes in the hydrological cycle. And more germane to the matter at hand, in the early Eocene, the Arctic was much warmer than previously thought. According to Sluijs et al ocean temperatures were as high as 23C — rather like Key West today. These temperatures come to you courtesy of a novel biochemical proxy known as Tex86, derived from certain lipids produced by tiny plankton called Crenarchaeota. Tex86 is the new wunderkind of paleoceanography.

Page 2 of 4 | Previous page | Next page