Warming, interrupted: Much ado about natural variability

What we find is that when interannual modes of variability in the climate system have what I’ll refer to as an “episode,” shifts in the multi-decadal global mean temperature trend appear to occur. I’ll leave the details of these episodes to interested readers (here and here), as things get pretty technical. It’s sufficient to note that we have an objective criteria for what defines an episode; we aren’t just eyeballing curves. The climate system appears to have had three distinct “episodes” during the 20th century (during the 1910′s, 1940′s, and 1970′s), and all three marked shifts in the trend of the global mean temperature, along with changes in the qualitative character of ENSO variability. We have also found similar types of shifts in a number of model simulations (both forced and unforced) that were run in support of the IPCC AR4 report.

The contentious part of our paper is that the climate system appears to have had another “episode” around the turn of the 21st century, coinciding with the much discussed “halt” in global warming. Whether or not such a halt has really occurred is of course controversial (it appears quite marked in the HadCRUT3 data, less so in GISTEMP); only time will tell if it’s real. Regardless, it’s important to note that we are not talking about global cooling, just a pause in warming.

What’s our perspective on how the climate will behave in the near future? The HadCRUT3 global mean temperature to the right shows the post-1980 warming, along with the “plateau” in global mean temperature post-1998. Also shown is a linear trend using temperatures over the period 1979-1997 (no cherry picking here; pick any trend that doesn’t include the period 1998-2008). We hypothesize that the established pre-1998 trend is the true forced warming signal, and that the climate system effectively overshot this signal in response to the 1997/98 El Niño. This overshoot is in the process of radiatively dissipating, and the climate will return to its earlier defined, greenhouse gas-forced warming signal. If this hypothesis is correct, the era of consistent record-breaking global mean temperatures will not resume until roughly 2020. Of course, this contrasts sharply with other forecasts of the climate system; the purple line roughly indicates the model-based forecast of Smith et al. (2007) , suggesting with a warming of roughly 0.3 deg C over the 2005-2015 period.

Why would anyone in their right mind believe what I’ve just outlined? Everything hinges on the idea that something extraordinary happened to the climate system in response to the 1997/98 super-El Niño event (an idea that has its roots in the wavelet analysis by Park and Mann (2000)). The figure to the left shows the spatial mean temperature over all grid boxes in the HadCRUT3 data set that have continuous monthly coverage over the 1901-2008 period. While this provides a skewed view of the global mean, as it is heavily weighted toward North America, Europe and coastal areas, unlike the global mean temperature it has the cardinal virtue of being a consistent record with respect to time. The sole exclusion in the figure is the line connecting the 1997 and 1998 temperatures.

Now, anomalous behavior is always in the eye of the beholder. However, the jump in temperature between 1997 and 1998 in this record certainly appears to pass the “smell test” (better than 3 standard deviations of interannual variability) for something out of the ordinary. Nor is this behavior dependent on the underlying time interval chosen, as the same basic picture emerges for any starting time up until the 1980′s, provided you look at locations that have continuous coverage over your interval. Again, as the temperature anomaly associated with this jump dissipates, we hypothesize that the climate system will return to its signal as defined by its pre-1998 behavior in roughly 2020 and resume warming.

Page 2 of 3 | Previous page | Next page