Climate Services

I recently attended the World Climate Conference-3 (WCC-3), hosted by the World Meteorological Organization (WMO) in Geneva. Most of the talk was of providing “climate services” (CS) and coordinating these globally. But what are climate services, and how much of what was envisaged is scientifically doable?

Climate services is a fairly new term that involves the provision of climate information relevant for adaptation to climate change and climatic swings, long-term planning, and facilitating early warning systems (EW).

CS includes both data describing past and future climate, and usually involves downscaling to provide information on regional and local scales. It can be summarised by the contents of http://www.climateservices.gov/ (also see this link to an article discussing the US National Climate services).

It was stressed during WCC-3 that CS must not only communicate relevant information, but this information must also be ‘translated’ to non-expert in a way that it can be acted upon.

One concern expressed during WCC-3 was that global climate models still do not give a sufficiently accurate description of the regional and local aspects of the climate. The models also have serious limitations when they are to be used for seasonal and decadal forecasting. Climate models were originally designed to provide the large picture of our climate system, and the fact that ENSO, cyclones, various wave phenomena (observed in the real world) appear in the model output – albeit with differences in details – give us increased confidence that they capture real physical processes. For climate prediction, these details, often caricatured by the models, must be more accurate.

Although the dynamical aspects and regional scales are important, one must keep in mind that the atmospheric radiative transfer atmospheric models represent the core of the theory behind AGW, and that AGW involves longer time scales. Few scientists seriously doubt these radiative transfer models, which are closely related to the algorithms used in remote sensing, e.g. by satellites, to calculate temperatures. If one interprets the the New Scientist report from the WCC-3 as that the situation is no longer as dire previously thought, then one is in for a big disappointment. The sentiment is rather that climate change is unavoidable, and that we need to establish tools in order to plan and deal with the problems.

There are some signs, however, that biases and systematic errors in the global climate models (GCMs) can be reduced by increasing the spatial (and temporal) resolution, or by including a realistic representation of the stratosphere. Problems associated with the description of local and regional climates cannot merely be corrected through downscaling.

One concern was that the bit of code called ‘parametrisation’ (employed in the models to describe the bulk effect of physical processes taking place over a spatial scale too small for the model grid) may not be sufficiently good for the job of simulating all local climatic aspects. For this reason, there was a call for a globally coordinated effort in providing computer resources and climate simulation.

Some speakers stressed the importance of a truly global set of climate observation. In this context, it’s also crucial to share data without restrictions, in addition to aiding poor countries to make high quality measurements.

Page 1 of 2 | Next page