Ice age constraints on climate sensitivity

There is a new paper on Science Express that examines the constraints on climate sensitivity from looking at the last glacial maximum (LGM), around 21,000 years ago (Schmittner et al, 2011) (SEA). The headline number (2.3ºC) is a little lower than IPCC’s “best estimate” of 3ºC global warming for a doubling of CO2, but within the likely range (2-4.5ºC) of the last IPCC report. However, there are reasons to think that the result may well be biased low, and stated with rather more confidence than is warranted given the limitations of the study.

Climate sensitivity is a key characteristic of the climate system, since it tells us how much global warming to expect for a given forcing. It usually refers to how much surface warming would result from a doubling of CO2 in the atmosphere, but is actually a more general metric that gives a good indication of what any radiative forcing (from the sun, a change in surface albedo, aerosols etc.) would do to surface temperatures at equilibrium. It is something we have discussed a lot here (see here for a selection of posts).

Climate models inherently predict climate sensitivity, which results from the basic Planck feedback (the increase of infrared cooling with temperature) modified by various other feedbacks (mainly the water vapor, lapse rate, cloud and albedo feedbacks). But observational data can reveal how the climate system has responded to known forcings in the past, and hence give constraints on climate sensitivity. The IPCC AR4 (9.6: Observational Constraints on Climate Sensitivity) lists 13 studies (Table 9.3) that constrain climate sensitivity using various types of data, including two using LGM data. More have appeared since.

It is important to regard the LGM studies as just one set of points in the cloud yielded by other climate sensitivity estimates, but the LGM has been a frequent target because it was a period for which there is a lot of data from varied sources, climate was significantly different from today, and we have considerable information about the important drivers – like CO2, CH4, ice sheet extent, vegetation changes etc. Even as far back as Lorius et al (1990), estimates of the mean temperature change and the net forcing, were combined to give estimates of sensitivity of about 3ºC. More recently Köhler et al (2010) (KEA), used estimates of all the LGM forcings, and an estimate of the global mean temperature change, to constrain the sensitivity to 1.4-5.2ºC (5–95%), with a mean value of 2.4ºC. Another study, using a joint model-data approach, (Schneider von Deimling et al, 2006b), derived a range of 1.2 – 4.3ºC (5-95%). The SEA paper, with its range of 1.4 – 2.8ºC (5-95%), is merely the latest in a series of these studies.

Definitions of sensitivity

The standard definition of climate sensitivity comes from the Charney report in 1979, where the response was defined as that of an atmospheric model with fixed boundary conditions (ice sheets, vegetation, atmospheric composition) but variable ocean temperatures, to 2xCO2. This has become a standard model metric (because it is relatively easy to calculate. It is not however the same thing as what would really happen to the climate with 2xCO2, because of course, those ‘fixed’ factors would not stay fixed.

Page 1 of 5 | Next page

References

  1. A. Schmittner, N.M. Urban, J.D. Shakun, N.M. Mahowald, P.U. Clark, P.J. Bartlein, A.C. Mix, and A. Rosell-Mele, "Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum", Science, vol. 334, pp. 1385-1388, 2011. http://dx.doi.org/10.1126/science.1203513
  2. C. Lorius, J. Jouzel, D. Raynaud, J. Hansen, and H.L. Treut, "The ice-core record: climate sensitivity and future greenhouse warming", Nature, vol. 347, pp. 139-145, 1990. http://dx.doi.org/10.1038/347139a0
  3. P. Köhler, R. Bintanja, H. Fischer, F. Joos, R. Knutti, G. Lohmann, and V. Masson-Delmotte, "What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity", Quaternary Science Reviews, vol. 29, pp. 129-145, 2010. http://dx.doi.org/10.1016/j.quascirev.2009.09.026
  4. T. Schneider von Deimling, H. Held, A. Ganopolski, and S. Rahmstorf, "Climate sensitivity estimated from ensemble simulations of glacial climate", Climate Dynamics, vol. 27, pp. 149-163, 2006. http://dx.doi.org/10.1007/s00382-006-0126-8