The AR4 attribution statement

There are good reasons why the IPCC assessed that the probability was not as low as suggested by the models or any individual attribution paper. Specifically, the overall assessment must take into account potential structural uncertainties that don’t come into the straight model analysis. For instance, the models may systematically be overestimating the GHG-driven trend, they may be underestimating the internal variability, and they may be undersampling the structural uncertainty in making models themselves. The first kind of error would cause an overestimate in the mean of the distribution, while the other factors would cause an underestimate in the variance of the trends – all would increase P(x < 50%). On the other hand, the net forcing is almost certainly less than the effect of anthropogenic GHGs alone and so that biases the mean of the ‘all-forcings’ trends low, and some of the spread in the trends is related to different models having different forcings (biasing the spread wide). These elements can be quantified during the attribution (using fingerprint scaling, monte-carlo emulators etc.), but when they are all taken into account, the difference is less than one might think (it turns out that structural uncertainty likely isn’t being underestimated and the internal variability in models comfortably spans the range inferred in the real world (Yokohata et al., 2011; Santer et al., 2011)).

Curry and Webster specifically bring up two issues that, they claim, lessen the confidence one should have in the IPCC statement: that the history of solar forcing is uncertain in scale, and that aerosol forcings have a huge error bar. These two statements are true as far as they go – the scale of solar forcing is not tightly constrained prior to about 1960, and the total aerosol forcing and it’s variation in time is uncertain. But C&W’s specific complaint is that the attribution studies used in AR4 used solar forcing that was too large compared to more recent studies. However, reducing any warming trend associated with solar actually makes the attribution statement more likely which somewhat undercuts their point.

With respect to aerosols, the key thing to remember that regardless of the magnitude of the change, the sign of the forcing is almost certainly negative (i.e. the net aerosol effect has been one of cooling). The dominant anthropogenic aerosols are sulphates (derived from the SO2 emitted during the burning of sulphur-containing fossil fuels), which are reflective, and hence cooling. Other aerosols (black carbon, organic carbon, nitrates) are more uncertain, but have a net effect that is smaller.

Now, the statement in AR4 specifically states that the effect of greenhouse gases is more than half of the observed trend, which is actually independent of the effects of aerosols. But with the high probability of aerosols being a net cooling, this increases the ratio of the GHG-driven trends to the actual forced trend.

The final issue is whether the internal variability of the system on multi-decadal timescales has been properly characterised. For instance, it is possible that all the models grossly underestimate the internal variability, in which case any expected trend due to GHGs would be drowned out in the noise. But there is no positive evidence for this at all – as Hegerl et al point out, the estimates of multi-decadal variability in the models and observational records all overlap within their (substantial) uncertainties (arising from the shortness of the record, and the difficulty in estimating internal variability in the presence of multiple forcings). So while it is conceivable be that there is a bias, it is currently undetectable, which implies it can’t be that large.

In summary then, the IPCC AR4 statement was a fair, even conservative, assessment. There is an unfortunate tendency to reify the particular statements made by IPCC, since there were clearly other correct statements that could have been made. For instance, it might well have been worthwhile to add a statement about the likely range of the anthropogenic trends (i.e 80-120% of the actual trend or similar), so that a better picture of the appropriate distribution could be given (see Huber and Knutti (2011) for examples). But claims that the statement was unsupported, or that it demonstrated that IPCC was ignoring uncertainty are simply untenable.

Page 3 of 4 | Previous page | Next page

References

  1. T. Yokohata, J.D. Annan, M. Collins, C.S. Jackson, M. Tobis, M.J. Webb, and J.C. Hargreaves, "Reliability of multi-model and structurally different single-model ensembles", Clim Dyn, vol. 39, pp. 599-616, 2012. http://dx.doi.org/10.1007/s00382-011-1203-1
  2. B.D. Santer, C. Mears, C. Doutriaux, P. Caldwell, P.J. Gleckler, T.M.L. Wigley, S. Solomon, N.P. Gillett, D. Ivanova, T.R. Karl, J.R. Lanzante, G.A. Meehl, P.A. Stott, K.E. Taylor, P.W. Thorne, M.F. Wehner, and F.J. Wentz, "Separating signal and noise in atmospheric temperature changes: The importance of timescale", J. Geophys. Res., vol. 116, pp. n/a-n/a, 2011. http://dx.doi.org/10.1029/2011JD016263
  3. M. Huber, and R. Knutti, "Anthropogenic and natural warming inferred from changes in Earth’s energy balance", Nature Geosci, vol. 5, pp. 31-36, 2011. http://dx.doi.org/10.1038/ngeo1327