Global Temperatures, Volcanic Eruptions, and Trees that Didn’t Bark

My co-authors and I have just published an article in Nature Geoscience (advance online publication here; associated press release here) which seeks to explain certain enigmatic features of tree-ring reconstructions of Northern Hemisphere (NH) temperatures of the past millennium. Most notable is the virtual absence of cooling in the tree-ring reconstructions during what ice core and other evidence suggest is the most explosive volcanic eruption of the past millennium–the AD 1258 eruption. Other evidence suggests wide-spread global climate impacts of this eruption [see e.g. the review by Emile-Geay et al (2008)]. We argue that this–and other missing episodes of volcanic cooling, are likely an artifact of biological growth effects, which lead to a substantial underestimation of the largest volcanic cooling events in trees growing near treeline. We speculate that this underestimation may also have led to overly low estimates of climate sensitivity in some past studies attempting to constrain climate model sensitivity parameters with proxy-reconstructed temperature changes.

Tree rings are used as proxies for climate because trees create unique rings each year that often reflect the weather conditions that influenced the growing season that year. For reconstructing past temperatures, dendroclimatologists typically seek trees growing at the boreal or alpine treeline, since temperature is most likely to be the limiting climate variable in that environment. But this choice may also prove problematic under certain conditions. Because the trees at these locations are so close to the threshold for growth, if the temperature drops just a couple of degrees during the growing season, there will be little or no growth and therefore a loss of sensitivity to any further cooling. In extreme cases, there may be no growth ring at all. And if no ring was formed in a given year, that creates a further complication, introducing an error in the chronology established by counting rings back in time.

We compared simulated temperature of the past millennium derived by driving theoretical climate models with estimated natural (volcanic+solar) and anthropogenic forcings for the past millennium. We employed two different climate model simulations: (1) the simulation of the NCAR CSM 1.4 coupled atmosphere-ocean General Circulation Model (GCM) analyzed by Ammann et al (2007) and (2) simulations of a simple Energy Balance Model (EBM). While the GCM provides a more comprehensive and arguably realistic description of the climate system, the computational simplicity of the EBM lends itself to extensive sensitivity tests. As the target for our comparison, we used a state-of-the-art tree-ring based Northern Hemisphere (NH) mean temperature reconstruction of D’Arrigo et al (2006). The reconstruction was based on a composite of tree ring annual ring width series from boreal and alpine treeline sites across the northern hemisphere, and made use of a very conservative (“RCS”) tree-ring standardization procedure designed to preserve as much low-frequency climatic information as possible.

Page 1 of 4 | Next page