Yamal and Polar Urals: a research update

Figure 1 (from Fig. 13 of BEA13). Summer temperature reconstructions based on either the Yamal ring-width chronology (red line, orange confidence intervals) or by combining information from the Yamal and Polar Urals ring-width chronologies and the Polar Urals density chronology (blue line, blue confidence intervals). The latter is shorter because the Polar Urals data are shorter and also has two versions that differ in how they are calibrated and in the summer temperature that they represent (in panels (a)-(e) it represents mean June–August temperature shown by the black dotted lines, while in panel (f) it represents mean June–July temperature shown by black continuous lines). Each panel shows a different time period and degree of smoothing; the values near to the end of the smoothed series are more uncertain than shown here due to the presence of end effects on the spline filters. The low-frequency agreement between the series is expected because the Yamal ring-width data are common to both reconstructions.

A response to the critics

The publication of our paper provides a timely opportunity to revisit and respond to a series of unfounded criticisms that have been levelled at our work in recent years, mostly originating from Steve McIntyre at the ClimateAudit blog, though they have been widely repeated and embellished by other commentators.

It is of course usual for results to be improved and superseded as science progresses. Our new Yamalia ring-width chronology differs from the Yamal chronology published by Briffa (2000) – see Figure 2a for a comparison. The very recent values are now lower (and extend by a decade more), but so are the estimates around 1000 CE. The consequent differential between medieval and modern growth is hardly changed. The period of high growth centred near to 250 CE (noted above) is also relatively unchanged, and is now the most prominent pre-20th century period of anomalous growth in the last 2000 years. These changes are because of genuine scientific progress, not because – as our critics have claimed – we had previously presented a deceptive chronology. They arise from extra data collection and, particularly, developments in tree-ring standardization methods (see the paper for details).

Figure 2. (a) Comparison of the Briffa (2000) Yamal ring-width chronology (red) and the new Yamalia ring-width chronology (black). (b) Comparison of the new Yamalia ring-width chronology (black) and two chronologies that have been promoted by critics of our work, but which turn out to be biased: the Polar Urals “update” chronology (purple; from Esper et al., 2002) and the Yamal chronology with modern data coming only from the Khadyta River site (blue). All series were scaled to have unit variance before being smoothed with a 10-year filter.

Figure 2b compares the new Yamalia chronology with two alternative chronologies heavily promoted by McIntyre and others – the so-called Polar Urals “update” chronology and a Yamal chronology using modern samples from the Khadyta River site. Both chronologies present a different picture of the difference between peak medieval and peak modern growth rates, with elevated growth around 1000 CE and suppressed growth in the 20th century. Our paper demonstrates that these two alternative chronologies are flawed.

The real Yamal deception

Some background is perhaps needed regarding our preferred chronologies. Briffa et al. (1995) developed chronologies from Polar Urals ring width and density data. Subsequently, Briffa (2000) presented a 2000-year ring width chronology from nearby Yamal, which had much better replication (more trees) than the Polar Urals data and was therefore preferred. The Polar Urals data were later supplemented by additional samples which were used by Esper et al. (2002). Even including these additional samples the Yamal chronology remained better replicated: of the 1213 overlap years, the Briffa (2000) Yamal has 4 years with samples from less than 10 trees, while the “updated” Polar Urals chronology has 264 years with data from less than 10 trees, many of them in the medieval period (see here for more details). The additional sub-fossil data used in our new paper further increases the replication of the Yamal chronology compared with the Polar Urals chronology (Figure EC1 in the SI of the new paper). On the basis of replication and the strength of the common signal, the Yamal record was, and remains, superior to the Polar Urals chronology.

Page 2 of 4 | Previous page | Next page


  1. K.R. Briffa, "Annual climate variability in the Holocene: interpreting the message of ancient trees", Quaternary Science Reviews, vol. 19, pp. 87-105, 2000. http://dx.doi.org/10.1016/S0277-3791(99)00056-6
  2. K.R. Briffa, P.D. Jones, F.H. Schweingruber, S.G. Shiyatov, and E.R. Cook, "Unusual twentieth-century summer warmth in a 1,000-year temperature record from Siberia", Nature, vol. 376, pp. 156-159, 1995. http://dx.doi.org/10.1038/376156a0
  3. J. Esper, "Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability", Science, vol. 295, pp. 2250-2253, 2002. http://dx.doi.org/10.1126/science.1066208