Science of Climate Change online class starting next week on Coursera

Maybe you remember the rollout a few years ago of Open Climate 101, a massive open online class (MOOC) that was served sort of free-range from a computer at the University of Chicago. Now the class has been entirely redone as Global Warming: The Science of Climate Change within the far slicker Coursera platform. Beginning on October 21, the class is free and runs for 8 weeks. The videos have been reshot in a short and punchy (2-10 minute) format, for example here (8:13). These seem like they will be easier to watch than traditional 45-minute lectures from a classroom. It’s based on, and will show you how to play with, all-new on-line computer models, including extensive new browsing systems for global climate records and model results from the new AR5 climate model archive, an ice sheet model you can clobber with slugs of CO2 as it evolves, and more. Come and watch the train wreck join the fun!

Course content

The class follows the general structure of Open Climate 101, based on the textbook Global Warming: Understanding the Forecast. This is class about science, but it is intended to be understandable by people without a strong science background.

Weeks 1-4 start from the very simplest model for the temperature of a planet, and build a picture of the complexity of the real climate system on Earth, with the greenhouse effect and climate feedbacks.

Weeks 5-6 consider the past and future carbon cycle.

Weeks 7-8 explain where we are and what can be done.

New On-line Climate Stuff

Coursera seems like a powerful medium for teaching any topic. But my class in particular is like no other Coursera class that I’ve heard of, in that it offers a suite of on-line interactive models that you can see here. They are always up and publicly available, so you teachers can throw students at them, no problem.

A time-series browser provides access to the GHCNM (NOAA link is currently shut down) global meteorological station monthly mean temperatures (7169 stations), and global glacier length records (472 records). These records can be compared with climate model results from the new AR5 model results, extracted from their grids. There are 12 different models and four scenarios, including Historical, HistoricalNat (natural-only), RCP2.6 (an optimistic ramping-down scenario), and RCP8.5 (less optimistic). This is a very open-ended system; my intent is to allow students to investigate a topic of their own devising, which they will write up and submit to grading by other students, a bit of Coursera wizardry.

Page 1 of 2 | Next page