Going with the wind

A first look at multi-decadal trends over the past two decades (see below) shows a dramatic signature in the Pacific Ocean; with sea surface cooling over the east and central Pacific and warming in the west, extending into the subtropics. Sea-level records also reveal a massive trend across the Pacific: with the east declining and the west rising well above the global average.  Basic physical oceanography immediately suggests a trade wind trend as the cause: as this helps pile warm water up in the west at the expense of the east. And sure enough, that is exactly what had occurred with the Pacific wind field.

A consistent picture has now emerged to explain the slowdown in global average SAT since 2001 compared to the rapid warming of the 1980s and 1990s: this includes the link between hiatus decades and the Interdecadal Pacific Oscillation, the enhanced ocean heat uptake in the Pacific (see previous posts) and the role of East Pacific cooling. All of these factors are consistent with a picture of strengthened trade winds, enhanced heat uptake in the western Pacific thermocline, and cooling in the east – as you can see in this schematic:

As our study set out to reconcile the emerging divide between observations and the multi-model mean across CMIP5 and CMIP3 simulations, we took a slightly different approach, although there are obvious parallels to Kosaka and Xie’s study assessing the impact of a cooler East Pacific.  In particular, we incorporated the recent 20-year trend in trade winds into both an ocean and a climate model, to quantify its impact. It turns out that with this single perturbation, much of the ‘hiatus’ can be simulated. The slowdown in warming occurs as a combined result of both increased heat uptake in the Western Pacific Ocean, and increased cooling of the east and central Pacific (the latter leads to atmospheric teleconnections of reduced warming in other locations).  We find that the heat content change within the ocean accounts for about half of the slowdown, the remaining half comes from the atmospheric teleconnections from the east Pacific.

Unfortunately, however, the hiatus looks likely to be temporary, with projections suggesting that when the trade winds return to normal strength, warming is set to be rapid (see below). This is because the recent accelerated heat uptake in the Pacific Ocean is by no means permanent; this is consistent with the shallow depths at which the excess heat can now be found, at the 100-300m layer just below the surface mixed layer that interacts with the atmosphere. [Ed: though see also Mike’s commentary on this aspect of the paper]

Even if the excess heat fluxed into the ocean were longer-term, burying the heat deep in the ocean would not come without its consequences; ocean thermal expansion translates this directly into sea-level rise, with Western Pacific Island nations already acutely aware of this from the recent trends.

Page 2 of 3 | Previous page | Next page


  1. Y. Kosaka, and S. Xie, "Recent global-warming hiatus tied to equatorial Pacific surface cooling", Nature, vol. 501, pp. 403-407, 2013. http://dx.doi.org/10.1038/nature12534