The most common fallacy in discussing extreme weather events + Update

Does global warming make extreme weather events worse? Here is the #1 flawed reasoning you will have seen about this question: it is the classic confusion between absence of evidence and evidence for absence of an effect of global warming on extreme weather events. Sounds complicated? It isn’t. I’ll first explain it in simple terms and then give some real-life examples.

The two most fundamental properties of extreme events are that they are rare (by definition) and highly random. These two aspects (together with limitations in the data we have) make it very hard to demonstrate any significant changes. And they make it very easy to find all sorts of statistics that do not show an effect of global warming – even if it exists and is quite large.

Would you have been fooled by this?

Imagine you’re in a sleazy, smoky pub and a stranger offers you a game of dice, for serious money. You’ve been warned and have reason to suspect they’re using a loaded dice here that rolls a six twice as often as normal. But the stranger says: “Look here, I’ll show you: this is a perfectly normal dice!” And he rolls it a dozen times. There are two sixes in those twelve trials – as you’d expect on average in a normal dice. Are you convinced all is normal?

You shouldn’t be, because this experiment is simply inconclusive. It shows no evidence for the dice being loaded, but neither does it provide real evidence against your prior suspicion that the dice is loaded. There is a good chance for this outcome even if the dice is massively loaded (i.e. with 1 in 3 chance to roll a six). On average you’d expect 4 sixes then, but 2 is not uncommon either. With normal dice, the chance to get exactly two sixes in this experiment is 30%, with the loaded dice it is 13%[i]. From twelve tries you simply don’t have enough data to tell.


In 2005, leading hurricane expert Kerry Emanuel (MIT) published an analysis showing that the power of Atlantic hurricanes has strongly increased over the past decades, in step with temperature. His paper in the journal Nature happened to come out on the 4th of August – just weeks before hurricane Katrina struck. Critics were quick to point out that the power of hurricanes that made landfall in the US had not increased. While at first sight that might appear to be the more relevant statistic, it actually is a case like rolling the dice only twelve times: as Emanuel’s calculations showed, the number of landfalling storms is simply far too small to get a meaningful result, as those data represent “less than a tenth of a percent of the data for global hurricanes over their whole lifetimes”. Emanuel wrote at the time (and later confirmed in a study): “While we can already detect trends in data for global hurricane activity considering the whole life of each storm, we estimate that it would take at least another 50 years to detect any long-term trend in U.S. landfalling hurricane statistics, so powerful is the role of chance in these numbers.” Like with the dice this is not because the effect is small, but because it is masked by a lot of ‘noise’ in the data, spoiling the signal-to-noise ratio.

Heat records

Page 1 of 5 | Next page