Shindell: On constraining the Transient Climate Response

Guest commentary from Drew Shindell

There has been a lot of discussion of my recent paper in Nature Climate Change (Shindell, 2014). That study addressed a puzzle, namely that recent studies using the observed changes in Earth’s surface temperature suggested climate sensitivity is likely towards the lower end of the estimated range. However, studies evaluating model performance on key observed processes and paleoclimate evidence suggest that the higher end of sensitivity is more likely, partially conflicting with the studies based on the recent transient observed warming. The new study shows that climate sensitivity to historical changes in the abundance of aerosol particles in the atmosphere is larger than the sensitivity to CO2, primarily because the aerosols are largely located near industrialized areas in the Northern Hemisphere middle and high latitudes where they trigger more rapid land responses and strong snow & ice feedbacks. Therefore studies based on observed warming have underestimated climate sensitivity as they did not account for the greater response to aerosol forcing, and multiple lines of evidence are now consistent in showing that climate sensitivity is in fact very unlikely to be at the low end of the range in recent estimates.

In particular, a criticism of the paper written by Nic Lewis has gotten some attention. Lewis makes a couple of potentially interesting points, chief of which concern the magnitude and uncertainty in the aerosol forcing I used and the time period over which the calculation is done, and I address these issues here. There are also a number of less substantive points in his piece that I will not bother with.

Lewis states that “The extensive adjustments made by Shindell to the data he uses are a source of concern. One of those adjustments is to add +0.3 W/m² to the figures used for model aerosol forcing to bring the estimated model aerosol forcing into line with the AR5 best estimate of -0.9 W/m².” Indeed the estimate of aerosol forcing used in the calculation of transient climate response (TCR) in the paper does not come directly from climate models, but instead incorporates an adjustment to those models so that the forcing better matches the assessed estimates from the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). An adjustment is necessary because as climate models are continually evaluated against observations evidence has become emerged that the strength of their aerosol-cloud interactions are too strong (i.e. the models’ ‘aerosol indirect effect’ is larger than inferred from observations). There have been numerous papers on this topic and this issue was thoroughly assessed in IPCC AR5 chapter 7. The assessed best estimate was that the historical negative aerosol forcing (radiation and cloud effects, but not black carbon on snow/ice) was too strong by about 0.3 Wm-2 in the models that included that effect, a conclusion very much in line with a prior publication on climate sensitivity by Otto et al. (2013). Given numerous scientific studies on this topic, there is ample support for the conclusion that models overestimate the magnitude of aerosol forcing, though the uncertainty in aerosol forcing (which is incorporated into the analysis in the paper) is large, especially in comparison with CO2 forcing which can be better constrained by observations.

Page 1 of 3 | Next page

References

  1. D.T. Shindell, "Inhomogeneous forcing and transient climate sensitivity", Nature Climate change, vol. 4, pp. 274-277, 2014. http://dx.doi.org/10.1038/nclimate2136
  2. A. Otto, F.E.L. Otto, O. Boucher, J. Church, G. Hegerl, P.M. Forster, N.P. Gillett, J. Gregory, G.C. Johnson, R. Knutti, N. Lewis, U. Lohmann, J. Marotzke, G. Myhre, D. Shindell, B. Stevens, and M.R. Allen, "Energy budget constraints on climate response", Nature Geosci, vol. 6, pp. 415-416, 2013. http://dx.doi.org/10.1038/ngeo1836