RealClimate logo


Technical Note: Sorry for any recent performance issues. We are working on it.

Friday round-up

Filed under: — group @ 24 July 2009

Two items of interest this week. First, there is an atrocious paper that has just been published in JGR by McLean, de Freitas and Carter that is doing the rounds of the denialosphere. These authors make the completely unsurprising point that that there is a correlation between ENSO indices and global mean temperature – something that has been well known for decades – and then go on to claim that that all trends are explained by this correlation as well. This is somewhat surprising since their method of analysis (which involves taking the first derivative of any changes) eliminates the influence of any trends in the correlation. Tamino has an excellent demonstration of the fatuity of the statements in their hyped press-release and Michael Tobis deconstructs the details. For reference, we showed last year that the long term trends are still basically the same after you account for ENSO. Nevermore let it be said that you can’t get any old rubbish published in a peer-reviewed journal!

Second (and much more interestingly) there is an open call for anyone interested to contribute to setting the agenda for Earth System Science for the next couple of decades at the Visioning Earth Science website of the International Council for Science (ICS). This is one of the umbrella organisations that runs a network of committees and programs that prioritise research directions and international programs and they are looking for ideas. Let them know what your priorities are.

Global trends and ENSO

Filed under: — gavin @ 4 July 2008 - (Español)

It’s long been known that El Niño variability affects the global mean temperature anomalies. 1998 was so warm in part because of the big El Niño event over the winter of 1997-1998 which directly warmed a large part of the Pacific, and indirectly warmed (via the large increase in water vapour) an even larger region. The opposite effect was seen with the La Niña event this last winter. Since the variability associated with these events is large compared to expected global warming trends over a short number of years, the underlying trends might be more clearly seen if the El Niño events (more generally, the El Niño – Southern Oscillation (ENSO)) were taken out of the way. There is no perfect way to do this – but there are a couple of reasonable approaches.

More »

Climate Change and Tropical Cyclones (Yet Again)

By Rasmus Benestad & Michael Mann
Hurricane Katerina
Just as Typhoon Nargis has reminded us of the destructive power of tropical cyclones (with its horrible death toll in Burma–around 100,000 according to the UN), a new paper by Knutson et al in the latest issue of the journal Nature Geosciences purports to project a reduction in Atlantic hurricane activity (principally the ‘frequency’ but also integrated measures of powerfulness).

The close timing of the Knutson et al and Typhoon Nargis is of course coincidental. But the study has been accorded the unprecedented privilege (that is, for a climate change article published during the past 7 years) of a NOAA press conference. What’s the difference this time? Well, for one thing, the title of the paper: “Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions” (emphasis added).

More »

El Nino, Global Warming, and Anomalous U.S. Winter Warmth

Filed under: — mike @ 8 January 2007 - (Slovenčina) (Svenska)

It has now become all too common. Peculiar weather precipitates immediate blame on global warming by some, and equally immediate pronouncements by others (curiously, quite often the National Oceanic and Atmospheric Administration in recent years) that global warming can’t possibly be to blame. The reality, as we’ve often remarked here before, is that absolute statements of neither sort are scientifically defensible. Meteorological anomalies cannot be purely attributed to deterministic factors, let alone any one specific such factor (e.g. either global warming or a hypothetical long-term climate oscillation).

Lets consider the latest such example. In an odd repeat of last year (the ‘groundhog day’ analogy growing ever more appropriate), we find ourselves well into the meteorological Northern Hemisphere winter (Dec-Feb) with little evidence over large parts of the country (most noteably the eastern and central U.S.) that it ever really began. Unsurprisingly, numerous news stories have popped up asking whether global warming might be to blame. Almost as if on cue, representatives from NOAA’s National Weather Service have been dispatched to tell us that the event e.g. “has absolutely nothing to do with global warming”, but instead is entirely due to the impact of the current El Nino event.

[Update 1/9/07: NOAA coincidentally has announced today that 2006 was officially the warmest year on record for the U.S.]
[Update 2/11/08: It got bumped to second place. ]
More »

Ocean heat content: latest numbers

Filed under: — gavin @ 16 August 2006

Net ocean heat content changes are very closely tied to the net radiative imbalance of the planet since the ocean component of the climate system has by far the biggest heat capacity. Thus we have often made the point that diagnosing this imbalance through measurements of temperature in the ocean is a key metric in evaluating the response of the system to changes in CO2 and the other radiative forcings (see here).
In a paper I co-authored last year (Hansen et al, 2005), we compared model results with the trends over the 1993 to 2003 period and showed that they matched quite well (here). Given their importance in evaluating climate models, new reports on the ocean heat content numbers are anticipated quite closely.

Recently, a new preprint with the latest observations (2003 to 2005) has appeared (Lyman et al, hat tip to Climate Science) which shows a decrease in the ocean heat content over those two years, decreasing the magnitude of the long-term trend that had been shown from 1993 to 2003 in previous work (Willis et al, 2004) – from 0.6 W/m2 to about 0.33 W/m2. This has generated a lot of commentary in some circles, but in many cases the full context has not been appreciated.
More »


Switch to our mobile site