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Key Points:

• Scafetta (2022) contains errors in both of the statistical tests used that make the
conclusions unsupportable.

Summary of Main Issues

• In section 3/figure 1 and in the conclusions arising from that comparison, no un-
certainty is given for the ERA5 temperature difference, making it impossible to
assess whether a given model result is compatible or not with the observations.

• The CMIP6 data used are the ensemble means for each model. However, the tem-
perature difference metric being tested is sensitive to the internal variability in the
models and so looking across the initial condition ensemble for each model (where
available) is necessary.

• When the observational uncertainty is included along with a fuller range of model
simulations, the conclusion that “all models with [Equilibrium Climate Sensitiv-
ity] ECS > 3.0◦C overestimate the observed global surface warming” is not sus-
tainable.

• The statistical test described in Section 2 is not suitable for comparing the forced
response estimated from models to the real world which is considered to contain
both a forced response and a single realization of the internal variability.

• The test used would reject all models even in a perfect model test given sufficient
ensemble members.

• The second conclusion then “that spatial t-statistics rejects the data-model agree-
ment over 60% (using low-ECS GCMs) to 81% (using high-ECS GCMs) of the Earth’s
surface” is also not sustainable.

• Correction of these errors will lead to a radical shift in the conclusions of the pa-
per.

Coupled Model Intercomparison Project (Phase 6) (CMIP6)

The CMIP6 archive is a publicly available collation of climate model experiments
performed by multiple groups around the world (Eyring et al., 2016). It includes sim-
ulations of the recent historical past, possible futures, and other idealized numerical ex-
periments. The key characteristics of the archive is that there is a) structural variabil-
ity across models, b) a quantification of initial condition uncertainty (since different ini-
tial conditions will give rise to different weather realizations), and c) some exploration
of forcing uncertainty and parametric uncertainty for some models. The historical hind-
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casts are run for 1850–2014, and are continued using the Shared Socioeconomic Path-
ways (SSPs) scenarios (2015–2100). For the purposes of this note, we will use the his-
torical simulations paired with the SSP2-4.5 scenario.

We use CMIP6 simulations from the same source as Scafetta (2022), the Climate
Explorer (ClimExp) from KNMI. There are at present 175 individual simulations avail-
able from this portal that have historical and ssp245 continuations, from 36 models plus
one physics variant which we treat as an independent model. One model listed in Scafetta
(2022) does not have any ssp245 data available through ClimExp (note this is a limited
subset of the full archive available through the Earth System Grid Federation (ESGF)).
ClimExp offers multiple options for downloading the model data for instance, one sim-
ulation per model variant, or the ensemble mean per model variant - when more than
one initial condition set is available, or a single simulation. In Section 3, Scafetta (2022)
claims to be examining single simulations from each model, however our replication shows
that the results in Table 1 are the ensemble means. We downloaded all the available sim-
ulations so that we could examine the impact of internal variability within each model.
One model (FIO-ESM-2) does not have a documented climate sensitivity, so its 3 sim-
ulations are not used in our analysis (as with Scafetta (2022)), leaving 172 usable sim-
ulations. We take the ECS values from Zelinka et al. (2020) (plus recent updates and
corrections).

Global mean comparisons with ERA5

We downloaded the global mean SAT from the ECMWF Re-Analysis (version 5)
(ERA5) (Hersbach et al., 2020; Simmons et al., 2021) directly from the Copernicus data
store. We calculate the temperature difference between the two full 11-year periods 1980–
1990 and 2011–2021. We note that this is not substantively different from the period used
in Scafetta (2022) (Jan 2011–Jun 2021). We compare the same period in the models, again
noting that this is not substantively different from the average of the 2011–2020 and 2011–
2021 periods used in Scafetta (2022). These differences simplify the calculations with-
out affecting the issues.

Uncertainty in the ERA5 temperature difference arises because of the random na-
ture of internal variability (such as the timing of El Niño events), and the standard er-
ror can be estimated using the residuals of the annual data points i.e.

σE =
1√
N

√∑
(Ti − T )2/

√
N − 1

where Ti is the set of annual anomalies from 2011–2021 baselined to 1980–1990, and N
is the number of years [Equation corrected 4/1/2022, HT to MarkR]. We estimate that
the mean and 95% confidence interval (±1.96×σE) for the difference is then 0.58±0.10 ◦C.

We summarise the results of the comparison in Fig. 1, which can be contrasted with
the right-hand panels in Scafetta’s Figure 1.

First, even with just the ensemble means from each model, there are three mod-
els with ECS well above 3◦C that can’t be statistically distinguished from ERA5. More
importantly, looking at the full ensemble, we find that 49 ensemble members from 18 mod-
els are compatible with the ERA5 result. Of those 18 models, 9 of them have ECS above
3◦C. This is in direct contradiction to the claims made in Scafetta (2022).
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Figure 1. The temperature difference between 1980–1990 and 2011–2021 in the global mean

surface air temperature in ERA5 and the CMIP6 ensemble plotted against each model’s Equi-

librium Climate Sensitivity (ECS). Green triangles represent the model ensemble mean for each

model or variant, while black dots represent (up to 25) other ensemble members. The pink shad-

ing represents the 95% uncertainty in the ERA5 estimate.
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Spatial comparisons and statistical test

Spatial patterns of change in models and observations are more affected by inter-
nal variability than the global mean. Thus even more care must be taken to compare
like with like. It is a common error to compare the multi-model mean and its standard
error with the observations. This test is essentially meaningless because we know a pri-
ori that they will not be equal (see Santer et al., 2008, for a discussion). Consider an ideal
climate model, with perfect representation of the relevant physics and unlimited spatial
and temporal resolution. An individual run of this model will not exactly match the ob-
servations because the initial conditions of the model run will not exactly match those
of the real Earth. The model run will have the same forced response, but a different re-
alisation of the internal variability. Initial condition ensembles are therefore used to cap-
ture the statistical distribution of the effects of internal variability, with a better esti-
mate of that distribution arising as more ensemble members were added. The standard
error of the ensemble mean continuously decreases as more ensemble members are used,
which means that the statistical test used in Scafetta (2022) is essentially guaranteed
to reject a perfect model ensemble, and is therefore inappropriate.

Detecting a statistically significant difference between an individual model run held
out from the ensemble and the mean of the remaining members would obviously not in-
dicate a “model failure”; nor would it be an indication of an “inconsistency” - a model
run cannot be inconsistent with the model from which it was generated. This provides
a practical sanity check of any proposed statistical test; if a model ensemble is used to
estimate the forced response, a test with 5% power should not reject individual held-out
ensemble members more than 5% of the time on average. This was the key problem with
test used in Douglass et al. (2008) that Santer et al (2008) addressed. The test used by
Scafetta (2022) also fails this check. In Eqn. 2, the denominator contains a

√
N term

which means that as the number of ensemble members increases, so will the rejection
rate. Thus the test is simply ill-formed.

A more appropriate test would be something like:

d = |Tm − To|/
√

s{< Tm >}2 + s{To}2

where s{< Tm >} is the standard deviation of the model temperature differences Tm

and s{To} is the standard error of the observed temperature difference, respectively, fol-
lowing Santer et al. (2008) (their Eqn. 12 with a single model). This tests whether the
observations are plausibly a sample from the distribution of model runs rather than for
exact equality between the ensemble mean and the observations that physical consid-
erations tell us will not be the case. In other words, it is a test of whether the observa-
tions are statistically exchangeable with the model runs. It is also important to account
for the spatial correlation and the rate at which spurious results would be generated by
chance with so many tests being performed at the gridbox level.

Given that an incorrect and misleading test (as has been long discussed in the lit-
erature) is being applied, we are confident that the conclusions drawn from the spatial
tests in Scafetta (2022) are spurious or, at best, grossly exaggerated.

Additional issues

There are a number of additional issues that, while minor relative to the two raised
above, should nonetheless be acknowledged. First, it is important to note the forcing un-
certainty over the historical period. For instance, the CESM2 model has been shown to
have a noticeable sensitivity to changes in the source and frequency of biomass burning
emission fields (Fasullo et al., 2022). A spurious global warming of up to 0.2◦C was iden-
tified as a result of decadal mean biomass burning inputs being replaced by annually vary-
ing inputs, which led to a rectified effect on global temperature through a non-linear re-
sponse to black carbon aerosols. Other forcings, such as ozone, or solar activity, are also
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imperfectly known, and this makes simple comparisons between the hindcasts and ob-
servations more complicated. Differences may arise between them not because of any-
thing intrinsic to the model processes, but rather to the uncertainty in the drivers. Sec-
ond, the number of ensemble members for many of the models is insufficient to estimate
their forced response and magnitude of internal variability which limits the extent to which
comparisons with those models will be informative.

In critiquing the tests in this particular paper, we are not suggesting that hindcast
comparisons should not be performed, nor are we claiming that all models in the CMIP6
archive perform equally well. Indeed, there are multiple papers that demonstrate that
CMIP6 models with high ECS values (above around 4.5◦C) do not perform well in his-
torical hindcasts (Tokarska et al., 2020; Ribes et al., 2021) or paleoclimate tests (Zhu et
al., 2021). However, the claims in this paper are simply not supported by an appropri-
ate analysis and should be withdrawn or amended.

Open Research

• ERA5 data (Global mean SAT): https://climate.copernicus.eu/sites/default/
files/ftp-data/temperature/2021/12/ERA5 1991-2020/ts 1month anomaly

Global ERA5 2T 202112 1991-2020 v01.csv
• CMIP6 ECS https://doi.org/10.5281/zenodo.6308291 (from Mark Zelinka).
• CMIP6 Annual Global Mean SAT (175 model simulations) from ClimExp http://

climexp.knmi.nl/selectfield cmip6.cgi?id=someone@somewhere
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