
What is a Low Order Model?
∂
∂tΨ  = NL(Ψ  ),

where NL is a nonlinear operator (quadratic nonlinearity)

Ψ (x,y,z,...,t)= ∑
i=-N
N  Ai(t)Φi(x,y,z,...)

dAi
dt  = ∑j;k=-N

N  cijkAjAk    +  ∑j=-N
N  bijAj + fi ≡ vi

NNooww  ttrruunnccaattee  ttoo  ssoommee  ssmmaallll  NN  ((≈≈   33--3300))!!



Some useful properties:
(a) Liouville Property

If ciij=c iji=0, then Σ(∂v i/∂A i) = 0 and nonlinear terms
preserve volume in phase space; rate of contraction of
volume is Tr(bb).

(b) Conservation Laws
If special conditions on cc  are met, then nonlinear terms
conserve Σ giAi2 for some vectors gg. (Typically one or two
such vectors, corresponding to energy and enstrophy).



General Philosophy

"As I began to learn meteorology, I found it necessary
to unlearn some mathematics." --Lorenz, Crafoord Prize
Lecture 1983.

"There is virtually no limit to the number of
phenomena which one might study by means of equations
simplified according to the manner we have described.  In
each case, the simplified equations may seem to be rather
crude approximations, but they should clarify our
understanding of the phenomena, and lead to plausible
hypotheses, which may then be tested by means of careful
observational studies and more refined systems of dynamic
equations." --Lorenz, Tellus  1960

"Very-low-order models cannot have as their purpose
the quantitative duplication of real atmospheric behavior.
Qualitatively they must reproduce some aspects of the
behavior, if they are to serve any purpose.  Often they are
of pedagogical value; they can illustrate in an
understandable manner the chain of events responsible for
some phenomenon.  Their chief use, however, may be
exploratory; they can uncover new features or phenomena,
which can subsequently be checked with more detailed
models, or perhaps with real observations."  --Lorenz, JAS
1984



Virtues of Low Order Models
♦ Easy to program, manage and modify
♦ Easy to archive and analyze output
♦ Rapidly generate data to test data analysis schemes
♦ May admit analytic treatment
♦ Possibility to analyze geometry of attractor
♦ Provide a quick check of physical reasoning
♦ Modest computer requirements

28-eqn. model, circa 1965:
1 cpu sec/time step (IBM 7090)

Contemporaneous models:
Phillips' 544 eqn 2-Layer QG model
GFDL 5184 eqn  PE model

GFDL R15 9-level GCM, circa 1987 (32,400 eqn.):
.7 cpu sec/time step (CYBER 205)
(with full physics!)

Limiting factor is not  computer power, but our ability to
understand nonlinear systems.



Maximal Simplification:
The Basic Triad Equations

♦Truncate barotropic f-plane equations to 3 waves with
k1+k2+k3=0   (Lorenz, Tellus  1960 and followers)

dA1
dt  =A2A3    - dd11AA11

dA2
dt  =-2A3A1 + gg  AA22    ++  ff  ccooss((ωωtt))

dA3
dt  =A2A1     - dd33AA33

These equations also describe resonant  Rossby wave triads
on the β-plane. (ω1+ω2+ω3=0)
Nonlinear terms conserve:

E = (A1)2+(A2)2+(A3)2
F = (A1)2 - (A3)2

Important ideas:
♦First concrete example of 2D cascade.
♦Nonlinear saturation of barotropic instability.
♦Associated mean flow oscillations.
♦Rossby waves are unstable (cf LorenzJAS  1972

HoskinsQJRMS  1973, and GillGAFD  1974.).
♦Variant:  WMF interaction with mountains ⇒

orographic instability & multiple equilibria.



Wave-Mean-Flow Interactions in the
Presence of Mountains

Barotropic β-plane truncated to 1 wave (Acos(x)+Bsin(x))
+ mean flow U, with mountain (h cos(x)).

dA
dt  = -(U-1)B + Uh -[[AA//ττ]] dB

dt  = (U-1)A -[[BB//ττ]]
dU
dt  = - Ah + [[κκ((UU**--UU))]]

Inviscid terms conserve:
E = A2 + B2 + U2 F = Bh + 12 (U  - 1)2
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Important ideas:
♦Orographic instability
♦Mean zonal wind reduction by mountain
♦Zonal wind fluctuations associated with interference

between standing and travelling wave.

With dissipative terms, get multiple equilibria (cf Charney &
Devore and followers):
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Mechanics of Vacillation
(Lorenz JAS  1962,1963)

f

Heating
Cooling

♦ 2-layer quasi-geostrophic channel model
♦ Mean flow + 1 wave in x; gravest mode in y ⇒ 6

eqn. model. (+ 2 for variable static stability).
♦ Inclusion of second y-mode ⇒ 14 eqn. model.

8-eqn. model:
Fixed Point Limit  Cycle

time

Hadley

time

Rossbyv v



14-eqn. model:
2D Torus Strange Attractor (?)

time

Reg. Vacillationv

time

Irreg. Vacillationv

Important ideas:
♦ First example of nonlinear equilibration of baroclinic

instability. Can equilibrate as travelling wave with steady
amplitude. Limit cycle behavior.

♦   Regular vacillation can arise from a secondary
instability of the travelling wave to a second degree of
freedom in the cross-channel direction.  Limit cycle
behavior of wave amplitude .

♦    Irregular vacillation can result from instability of
the aforementioned limit cycle.
Unresolved questions:

♦  Is irregular vacillation a high-order torus or a
strange attractor?

♦  Effect of topography on vacillation.



Predictability
(Lorenz Tellus  1965,1969)

♦ 2-layer quasi-geostrophic channel model
♦ Mean flow+3 waves in x; 2 modes in y⇒28 eqns.

Method of analysis:  Predictability matrices
(1) Let A (t) ≡ [A1(t),...,AN(t)] be the trajectory of the

system.
(2) Linearize the system about the trajectory A (t).

(can be done numerically with N perturbed integrations)
(3) Yields a predictability matrix  with the property

that A (t) = MM(t,t1)A (t1)
(4)  The eigenvalues of MM give the error growth; the

fastest growing mode determines predictability time.
If the unperturbed trajectory is a steady state, method

reduces to conventional stability analysis

A1

A2t1
t



Illustration:  Lorenz 3-eqn "GCM"  (Tellus 1984)
dX
dt  =-Y2 - Z2 - a X + aF
dY
dt  =XY  - b XZ - Y + G
dZ
dt  =bXY + XZ - Z

Important ideas:
♦ First estimate of limit of deterministic prediction.
♦ Baroclinic instability ⇒ predictability loss
♦  "Identical twin" methodology
♦ Variability of predictability
♦ Persistent regimes
♦ Number of unstable directions << 28
♦ Importance of Lyapunov exponents.

Unresolved questions:
♦ What gross features of flow determine rate of error

growth in the linear stage?
♦   Do time averages or other properties have

extended predictability (i.e. past the linear growth stage)?
♦  Is predictability loss of the large-scale component

due mainly to large-scale instability or to upscale nonlinear
effects of synoptic scale predictability loss?

♦  What is the dimensionality of attractor for the 28-
eqn. model, and how does it compare with the number of
unstable directions?



The Slow Manifold and Initialization
(Lorenz JAS  1980,1986)
To initialize pprriimmiittiivvee  eeqquuaattiioonnss, specify vorticity (Z),
divergence (D) and geopotential (Φ) at each point⇒ 33ΜΜ
degrees of freedom.  Fast gravity waves possible.

versus
To initialize qquuaassiiggeeoossttrroopphhiicc  eeqquuaattiioonnss, specify only
geopotential (Φ) at each point⇒ ΜΜ degrees of freedom.
Gravity waves filtered out.

In QG flow, 2M of the 3M variables are slaved to the
remaining M variables, defining a <M dimensional slow
m a n i f o l d .  Does this happen in more general
circumstances?  How can we locate the slow manifold?

Basic idea:  Instead of setting Fi=0, set dFi/dt=0, where Fi isthe "fast variable" amplitude. (cf Machenhauer, Baer-
Tribbia)



The model:
♦ 1-layer primitive equation system
♦ Truncate to (1 wave in x)*(1 mode in y)*(3 fields)

⇒ 9 eqn. PE model with 3D quasigeostrophic subsystem.
Illustration: 5-eqn  simplified PE model   (JAS  1986)

dU
dt  =-VW + bVZ
dV
dt  = UW  - bUZ
dW
dt  =-UV

dX
dt  =-Z dZ

dt  =X + b UV

Conserves U2 + V2 + W2 + X2 + Z2  and U2 + V2.
⇒3D phase space [tan-1(V/U),W,X)]

Important ideas:
♦  Slow manifold concept is valid
♦ Nonlinear normal mode initialization can indeed

locate a slow manifold.
♦ Convergence of "superbalance" series not necessary

for existence of a useful slow manifold.
Possible extensions:

♦ Use 9-eqn PE model to test data assimilation
schemes (e.g. adjoint method).

♦  Explore diabatic initialization schemes (esp. effect
of initialization on Hadley cell).

♦   Generation of gravity waves when balance
equation becomes insoluble.



Low Frequency Variability
(a.k.a. weather regimes, "blocking," almost-intransitivity,
etc.)
What is the nature of low frequency variability?  How
predictable is it?
DDooeess  CClliimmaattee  EExxiisstt??

The time average 1
T ∫0

T
A(t) does not necessarily

converge as T→ ∞ .  Failure is associated with high
probability of persistent events (e.g. 1/f noise).

Averaging period T
Averaging period 2T

A

IIss  iitt  uunniiqquuee??
i.e., with forcing and dissipation included, does long

term behavior depend on initial conditions? (intransitivity)
Or is the attractor all one piece?

Examples:  Multiple stable fixed points or limit cycles
(not very "atmospheric").



Persistent Structures:
(a) Unstable  fixed points embedded in attractor, e.g.

Hadley solution in 9-eqn. PE model. (Stable manifold must
be non-empty).

Unstable fixed point
off attractor
Unstable fixed point
on attractor

(b)  Unstable low-period orbits
(c)  Unstable lower-dimension strange attractors
(d)  Complex fixed points, etc. near the real axis.

How can we predict the presence of persistent structures?
How can we diagnose their presence in data?



Time-smoothed equations: an approach to regimes
Let Bi be "large scale" variables and Ai be "small

scale" variables with <Ai>≈0.  Equations for d<Bi>
dt  involve

correlations Rij = <AiAj>, etc.
To what extent is Rij a function of <B1>...<BM>?

Answer can be found by looking at geometry of time-
smoothed trajectories.

Some other related issues:
♦ Probability distribution on attractor
♦ Persistence ""                             ""
♦ Recurrence times
♦ Relation of instability of climatological wave to

structure of the large-scale variability. (cf Simmons,
Branstator & Wallace).



Spatial Chaos
Equations for advection of a marker particle:

dX
dt   =  ∂Ψ(X,Y,t)

∂Y
dY
dt   =  – ∂Ψ(X,Y,t)

∂X
Simple flow fields  can lead to chaotic advection!

Example:  Two Rossby waves in a channel
(collaboration with A. Belmonte)
Ψ = [ A cos(k1(x-c1t)) + ε cos(k2(x-c2t)) ]sin(y)

Use [(x-c1t),Y, k2(c1-c2)t] as 3D phase space.
Streamlines of unperturbed flow:

x-c t 1

y

Fixed  Points



Under weak perturbation:

Stochastic band Tori

Some questions:

♦ How much of mixing is due to large
scale advection?

♦ What is the mixing pattern of common
L.O.M.'s?

♦ How does this compare with high-
resolution models?

N.B.-- Potential vorticity is also a tracer.  Does
potential vorticity homogenization in high-resolution models
coincide with stochastic bands of L.O.M.'s?



The First 30 Years
   Model N Phenomena
barotropic triad 3 2D "cascade"
(+ forcing & dissip) Rossby wave instability

Barotropic instability &
   mean flow oscillation
Multiple equilibria
Orographic instability

1 wave/1 mode 6 Nonlinear baroclinic instability
       2 layer QG
(+ mountains)
1 wave/2 mode 14 Regular/irregular vacillation
       2 layer QG Instability of tori
(+ mountains)
2-3 wave/2 mode 20 Predictability
       2 layer QG 28 Scale interactions
(+ mountains) Low frequency variability
1 wave/2 mode 28 Midlatitude air-sea interaction
  moist 2 layer QG SST effects on persistence
  with mixed-layer Latent heating in storm tracks
  ocean.
1 wave/1 mode 9 Slow manifold studies
       1 layer PE Initialization and assimilation

Gravity wave generation
Simplified PE 5 ""           ""               ""
"Lorenz '63" model 3 Deterministic chaos, free will,

     etc. (but not convection!)
Littlest GCM 3 Predictability

Almost-intransitivity
Low freq. variability


