# What the IPCC models really say

Over the last couple of months there has been much blog-viating about what the models used in the IPCC 4th Assessment Report (AR4) do and do not predict about natural variability in the presence of a long-term greenhouse gas related trend. Unfortunately, much of the discussion has been based on graphics, energy-balance models and descriptions of what the forced component is, rather than the full ensemble from the coupled models. That has lead to some rather excitable but ill-informed buzz about very short time scale tendencies. We have already discussed how short term analysis of the data can be misleading, and we have previously commented on the use of the uncertainty in the ensemble mean being confused with the envelope of possible trajectories (here). The actual model outputs have been available for a long time, and it is somewhat surprising that no-one has looked specifically at it given the attention the subject has garnered. So in this post we will examine directly what the individual model simulations actually show.

First, what does the spread of simulations look like? The following figure plots the global mean temperature anomaly for 55 individual realizations of the 20th Century and their continuation for the 21st Century following the SRES A1B scenario. For our purposes this scenario is close enough to the actual forcings over recent years for it to be a valid approximation to the simulations up to the present and probable future. The equal weighted ensemble mean is plotted on top. This isn’t quite what IPCC plots (since they average over single model ensembles before averaging across models) but in this case the difference is minor.

It should be clear from the above the plot that the long term trend (the global warming signal) is robust, but it is equally obvious that the short term behaviour of any individual realisation is not. This is the impact of the uncorrelated stochastic variability (weather!) in the models that is associated with interannual and interdecadal modes in the models – these can be associated with tropical Pacific variability or fluctuations in the ocean circulation for instance. Different models have different magnitudes of this variability that spans what can be inferred from the observations and in a more sophisticated analysis you would want to adjust for that. For this post however, it suffices to just use them ‘as is’.

We can characterise the variability very easily by looking at the range of regressions (linear least squares) over various time segments and plotting the distribution. This figure shows the results for the period 2000 to 2007 and for 1995 to 2014 (inclusive) along with a Gaussian fit to the distributions. These two periods were chosen since they correspond with some previous analyses. The mean trend (and mode) in both cases is around 0.2ºC/decade (as has been widely discussed) and there is no significant difference between the trends over the two periods. There is of course a big difference in the standard deviation – which depends strongly on the length of the segment.

Over the short 8 year period, the regressions range from -0.23ºC/dec to 0.61ºC/dec. Note that this is over a period with no volcanoes, and so the variation is predominantly internal (some models have solar cycle variability included which will make a small difference). The model with the largest trend has a range of -0.21 to 0.61ºC/dec in 4 different realisations, confirming the role of internal variability. 9 simulations out of 55 have negative trends over the period.

Over the longer period, the distribution becomes tighter, and the range is reduced to -0.04 to 0.42ºC/dec. Note that even for a 20 year period, there is one realisation that has a negative trend. For that model, the 5 different realisations give a range of trends of -0.04 to 0.19ºC/dec.

Therefore:

Page 1 of 3 | Next page