Much ado about methane

Methane is a powerful greenhouse gas, but it also has an awesome power to really get people worked up, compared to other equally frightening pieces of the climate story.

What methane are we talking about?

The largest methane pools that people are talking about are in sediments of the ocean, frozen into hydrate or clathrate deposits (Archer, 2007). The total amount of methane as ocean hydrates is poorly constrained but could rival the rest of the fossil fuels combined. Most of this is unattractive to extract for fuel, and mostly so deep in the sediment column that it would take thousands of years for anthropogenic warming to reach them. The Arctic is special in that the water column is colder than the global average, and so hydrate can be found as shallow as 200 meters water depth.

On land, there is lots of methane in the thawing Arctic, exploding lakes and what not. This methane is probably produced by decomposition of thawing organic matter. Methane could only freeze into hydrate at depths below a few hundred meters in the soil, and then only at “lithostatic pressure” rather than “hydrostatic”, meaning that the hydrate would have to be sealed from the atmosphere by some impermeable layer. The great gas reservoirs in Siberia are thought to be in part frozen, but evidence for hydrate within the permafrost soils is pretty thin (Dallimore and Collett,1995)

Russian gas well

Is methane escaping due to global warming?

There have been observations of bubbles emanating from the sea floor in the Arctic (Shakhova, 2010; Shakhova et al., 2005) and off Norway (Westbrook, 2009). The Norwegian bubble plume coincides with the edge of the hydrate stability zone, where a bit of warming could push the surface sediments from stable to unstable. A model of the hydrates (Reagan, 2009) produces a bubble plume similar to what’s observed, in response to the observed rate of ocean water warming over the past 30 years, but with this warming rate extrapolated further back in time over the past 100 years. The response time of their model is several centuries, so pre-loading the early warming like they did makes it difficult to even guess how much of the response they model could be attributed to human-induced climate change, even if we knew how much of the last 30 years of ocean warming in that location came from human activity.

Sonar images of methane plumes, from Westbrook

Lakes provide an escape path for the methane by creating “thaw bulbs” in the underlying soil, and lakes are everywhere appearing and disappearing in the Arctic as the permafrost melts. (Whether you get CO2 or a mixture of CO2 plus methane depends critically on water, so lakes are important for that reason also.)

Methane bubbles captured in freezing lake ice in Alaska

Page 1 of 3 | Next page


  1. D. Archer, "Methane hydrate stability and anthropogenic climate change", Biogeosciences, vol. 4, pp. 521-544, 2007.
  2. N. Shakhova, I. Semiletov, I. Leifer, A. Salyuk, P. Rekant, and D. Kosmach, "Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf", J. Geophys. Res., vol. 115, 2010.
  3. N. Shakhova, "The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle", Geophysical Research Letters, vol. 32, 2005.
  4. G.K. Westbrook, K.E. Thatcher, E.J. Rohling, A.M. Piotrowski, H. Pälike, A.H. Osborne, E.G. Nisbet, T.A. Minshull, M. Lanoisellé, R.H. James, V. Hühnerbach, D. Green, R.E. Fisher, A.J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt, and A. Aquilina, "Escape of methane gas from the seabed along the West Spitsbergen continental margin", Geophysical Research Letters, vol. 36, pp. n/a-n/a, 2009.
  5. M.T. Reagan, and G.J. Moridis, "Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin", Geophysical Research Letters, vol. 36, 2009.