Arctic Sea Ice Volume: PIOMAS, Prediction, and the Perils of Extrapolation

Guest Commentary by Axel Schweiger, Ron Lindsay, and Cecilia Bitz

We have just passed the annual maximum in Arctic sea ice extent which always occurs sometime in March. Within a month we will reach the annual maximum in Arctic sea ice volume. After that, the sea ice will begin its course towards its annual minimum of both extent and volume in mid-September. This marks the beginning of the ritual of the annual sea ice watch that includes predictions of the extent and rank of this year’s sea ice minimum, as well as discussion about the timing of its eventual demise. One of the inputs into that discussion is the “PIOMAS” ice-ocean model output of ice volume – and in particular, some high-profile extrapolations. This is worth looking at in some detail.

Prediction methods for the sea ice minima range from ad-hoc guesses to model predictions, from statistical analyses to water-cooler speculation in the blogosphere. Many of these predictions are compiled in the SEARCH-sponsored “sea ice outlook“.

This year’s discussions however will be without the input of the father of modern sea ice physics, Norbert Untersteiner, who recently died at the age of 86. Much of the physics in PIOMAS and global climate models can be traced to Norbert’s influence. Norbert was sober-minded and skeptical about the prospects of skillful short-term sea ice predictions, but even he couldn’t help but be drawn into the dubious excitement around the precipitous decline of arctic sea ice and regularly added his own guestimate to the sea ice outlook. Norbert’s legacy challenges those of us who engage in predictions to prove our skill and to understand and explain the limitations of our techniques so they are not used erroneously to misinform the public or to influence policy…more about that later and here.

PIOMAS

PIOMAS is the Panarctic Ice Ocean Modeling and Assimilation System. It belongs to the class of ice-ocean models that have components for the sea ice and the ocean, but no interactive atmosphere. There is an active community (AOMIP) engaged in applying and improving these types of models for Arctic problems. Without an atmosphere, inputs that represent the atmospheric forcing (near surface winds, temperature, humidity, and downwelling short and longwave radiation) need to be provided. Typically those inputs are derived from global atmospheric reanalysis projects. The advantage of such partially-coupled models is that they can be driven by past atmospheric conditions and the simulations match well the observed sea ice variability, which is strongly forced by the atmosphere.

This is in contrast to fully-coupled models, such as those used in the IPCC projections, which make their own version of the weather and can only be expected to approximate the mean and general patterns of variability and the long-term trajectory of the sea ice evolution. Another advantage of ice-ocean models is that they don’t have to deal with the complexities of a fully-coupled system. For example, fully-coupled models have biases in the mean wind field over the Arctic which may drive the sea ice into the wrong places, yielding unrealistic patterns of sea ice thickness. This has been a common problem with global climate models but the recent generation of models clearly shows improvement. Because sea ice is strongly driven by the atmosphere, model predictions depend on the quality of the future atmospheric conditions. Therefore an ice-ocean model, like PIOMAS, is much more accurate at hindcasts, when the atmospheric conditions are simply reconstructed from observations, than for forecasts, when atmospheric conditions must be estimated. That is not to say that PIOMAS can’t be used for predictions, it can (Zhang et al. 2008, Lindsay et al. 2008 , Zhang et al. 2010) but it is important to recognize that performance at hindcasts does not necessarily say much about performance at forecasts. This point often gets confused.

Page 1 of 6 | Next page