Wired Magazine’s Incoherent Truths

But wait, the story doesn’t stop there. First, there’s the fact that air conditioning almost invariably runs off of electricity, and the increased electricity demand is a big source of the pressure to build more coal-fired power plants. A house can be heated by burning natural gas, and right there air conditioning becomes 1.8 times worse than heating, because natural gas emits only 55% of the carbon of coal, per unit of heat energy produced. And it gets even worse: Coal fired power plants are only 30% efficient at converting heat into electricity, on average, so there you get another factor of 3.3 in carbon emissions per unit of energy transferred between the house and its environment. Finally, figure in a typical electric line transmission loss of 7% and you get another factor 1.075. Put it all together with the energy efficiency of the air conditioner itself and air conditioning comes in at a whopping 2.19 times less efficient than heating. for a given amount of temperature difference between house and environment. That means that so far as carbon emissions go, heating a house to 70 degrees when the outside temperature is 40 degrees is like cooling the same house to 70 degrees when the outside temperature is 83.7 degrees.

And that’s still not the end of the story. A house in need of air conditioning has other heat inputs besides the heat leaking in from outside, and all that extra heat needs to be gotten rid of as well. For example, heat is a waste-product of all energy use going on in the house. Four people produce 400W that needs to be gotten rid of, and then there’s the heat from hot water, lighting, the TV, cooking and what have you — all the energy usage within the house, plus 100W of biological heat per person needs to be gotten rid of. On top of that, you’ve got direct radiative heating from the sun, both from the sunllight getting through windows and solar heating of the exterior surfaces of the house, some of which will leak in through the insulation. Energy must be expended to remove all this heat. In contrast, in the heating season waste heat is subtracted from the energy needed for home heating.

So, WIRED got the story egregiously wrong, and not just because they did the arithmetic wrong. In their rush to be cute, they didn’t even make a half-baked attempt to do the arithmetic. But what if they had been right and air conditioning really were intrinsically more efficient than heating. Would that justify their conclusion that you can just "crank up the A/C?" without worry? No, of course not, because cranking up the A/C would still use additional energy and still lead to the emission of additional carbon. For the conclusion to be justified, it wouldn’t be enough for A/C to be more efficient than heating; it would have to be so much more efficient that the incremental energy usage from cranking it up were trivial. WIRED didn’t even try to make that case. If they had, they might have spotted their errors.

Is there any real conclusion that could have been drawn from more clear thinking about the heating vs. air conditioning issues danced around in the article? Yes, in fact. The conclusion is that it makes a lot of sense to build houses in places where the environment requires neither much heating nor much cooling. This is in fact why Los Angeles scores pretty well in carbon footprint per capita, despite all the driving (as noted recently in The Economist.). Another conclusion to be drawn from the carbon footprint of New England heating is that there are probably a lot of leaky homes up there heated by inefficient oil-fired furnaces. Fixing that situation represents a huge untapped virtual energy source.

Page 2 of 5 | Previous page | Next page