• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Climate Science / 2009 temperatures by Jim Hansen

2009 temperatures by Jim Hansen

17 Jan 2010 by group

This is Hansen et al’s end of year summary for 2009 (with a couple of minor edits). Update: A final version of this text is available here.

If It’s That Warm, How Come It’s So Damned Cold? 

 
by James Hansen, Reto Ruedy, Makiko Sato, and Ken Lo
 
The past year, 2009, tied as the second warmest year in the 130 years of global instrumental temperature records, in the surface temperature analysis of the NASA Goddard Institute for Space Studies (GISS). The Southern Hemisphere set a record as the warmest year for that half of the world. Global mean temperature, as shown in Figure 1a, was 0.57°C (1.0°F) warmer than climatology (the 1951-1980 base period). Southern Hemisphere mean temperature, as shown in Figure 1b, was 0.49°C (0.88°F) warmer than in the period of climatology.


Figure 1. (a) GISS analysis of global surface temperature change. Green vertical bar is estimated 95 percent confidence range (two standard deviations) for annual temperature change. (b) Hemispheric temperature change in GISS analysis. (Base period is 1951-1980. This base period is fixed consistently in GISS temperature analysis papers – see References. Base period 1961-1990 is used for comparison with published HadCRUT analyses in Figures 3 and 4.)

The global record warm year, in the period of near-global instrumental measurements (since the late 1800s), was 2005. Sometimes it is asserted that 1998 was the warmest year. The origin of this confusion is discussed below. There is a high degree of interannual (year‐to‐year) and decadal variability in both global and hemispheric temperatures. Underlying this variability, however, is a long‐term warming trend that has become strong and persistent over the past three decades. The long‐term trends are more apparent when temperature is averaged over several years. The 60‐month (5‐year) and 132 month (11‐year) running mean temperatures are shown in Figure 2 for the globe and the hemispheres. The 5‐year mean is sufficient to reduce the effect of the El Niño – La Niña cycles of tropical climate. The 11‐year mean minimizes the effect of solar variability – the brightness of the sun varies by a measurable amount over the sunspot cycle, which is typically of 10‐12 year duration.

C’est le résumé pour 2009 de Hansen et collaborateurs’, (avec quelques modifications mineures).

“Si ça se réchauffe tant, bon sang, pourquoi fait-il si froid?”

par James Hansen, Reto Ruedy, Makiko Sato, and Ken Lo (Traduction par Xavier Pétillon)


Figure 2. 60‐month (5‐year) and 132 month (11‐year) running mean temperatures in the GISS analysis of (a) global and (b) hemispheric surface temperature change. (Base period is 1951‐1980.)

There is a contradiction between the observed continued warming trend and popular perceptions about climate trends. Frequent statements include: “There has been global cooling over the past decade.” “Global warming stopped in 1998.” “1998 is the warmest year in the record.” Such statements have been repeated so often that most of the public seems to accept them as being true. However, based on our data, such statements are not correct. The origin of this contradiction probably lies in part in differences between the GISS and HadCRUT temperature analyses (HadCRUT is the joint Hadley Centre/University of East Anglia Climatic Research Unit temperature analysis). Indeed, HadCRUT finds 1998 to be the warmest year in their record. In addition, popular belief that the world is cooling is reinforced by cold weather anomalies in the United States in the summer of 2009 and cold anomalies in much of the Northern Hemisphere in December 2009. Here we first show the main reason for the difference between the GISS and HadCRUT analyses. Then we examine the 2009 regional temperature anomalies in the context of global temperatures.


Figure 3. Temperature anomalies in 1998 (left column) and 2005 (right column). Top row is GISS analysis, middle row is HadCRUT analysis, and bottom row is the GISS analysis masked to the same area and resolution as the HadCRUT analysis. [Base period is 1961‐1990.]

Figure 3 shows maps of GISS and HadCRUT 1998 and 2005 temperature anomalies relative to base period 1961‐1990 (the base period used by HadCRUT). The temperature anomalies are at a 5 degree‐by‐5 degree resolution for the GISS data to match that in the HadCRUT analysis. In the lower two maps we display the GISS data masked to the same area and resolution as the HadCRUT analysis. The “masked” GISS data let us quantify the extent to which the difference between the GISS and HadCRUT analyses is due to the data interpolation and extrapolation that occurs in the GISS analysis. The GISS analysis assigns a temperature anomaly to many gridboxes that do not contain measurement data, specifically all gridboxes located within 1200 km of one or more stations that do have defined temperature anomalies.

The rationale for this aspect of the GISS analysis is based on the fact that temperature anomaly patterns tend to be large scale. For example, if it is an unusually cold winter in New York, it is probably unusually cold in Philadelphia too. This fact suggests that it may be better to assign a temperature anomaly based on the nearest stations for a gridbox that contains no observing stations, rather than excluding that gridbox from the global analysis. Tests of this assumption are described in our papers referenced below.


Figure 4. Global surface temperature anomalies relative to 1961‐1990 base period for three cases: HadCRUT, GISS, and GISS anomalies limited to the HadCRUT area. [To obtain consistent time series for the HadCRUT and GISS global means, monthly results were averaged over regions with defined temperature anomalies within four latitude zones (90N‐25N, 25N‐Equator, Equator‐25S, 25S‐90S); the global average then weights these zones by the true area of the full zones, and the annual means are based on those monthly global means.]

Figure 4 shows time series of global temperature for the GISS and HadCRUT analyses, as well as for the GISS analysis masked to the HadCRUT data region. This figure reveals that the differences that have developed between the GISS and HadCRUT global temperatures during the past few decades are due primarily to the extension of the GISS analysis into regions that are excluded from the HadCRUT analysis. The GISS and HadCRUT results are similar during this period, when the analyses are limited to exactly the same area. The GISS analysis also finds 1998 as the warmest year, if analysis is limited to the masked area. The question then becomes: how valid are the extrapolations and interpolation in the GISS analysis? If the temperature anomaly scale is adjusted such that the global mean anomaly is zero, the patterns of warm and cool regions have realistic‐looking meteorological patterns, providing qualitative support for the data extensions. However, we would like a quantitative measure of the uncertainty in our estimate of the global temperature anomaly caused by the fact that the spatial distribution of measurements is incomplete. One way to estimate that uncertainty, or possible error, can be obtained via use of the complete time series of global surface temperature data generated by a global climate model that has been demonstrated to have realistic spatial and temporal variability of surface temperature. We can sample this data set at only the locations where measurement stations exist, use this sub‐sample of data to estimate global temperature change with the GISS analysis method, and compare the result with the “perfect” knowledge of global temperature provided by the data at all gridpoints.

1880‐1900 1900‐1950 1960‐2008
Meteorological Stations 0.2 0.15 0.08
Land‐Ocean Index 0.08 0.05 0.05

Table 1. Two‐sigma error estimate versus period for meteorological stations and land‐ocean index.

Table 1 shows the derived error due to incomplete coverage of stations. As expected, the error was larger at early dates when station coverage was poorer. Also the error is much larger when data are available only from meteorological stations, without ship or satellite measurements for ocean areas. In recent decades the 2‐sigma uncertainty (95 percent confidence of being within that range, ~2‐3 percent chance of being outside that range in a specific direction) has been about 0.05°C. The incomplete coverage of stations is the primary cause of uncertainty in comparing nearby years, for which the effect of more systematic errors such as urban warming is small.

Additional sources of error become important when comparing temperature anomalies separated by longer periods. The most well‐known source of long‐term error is “urban warming”, human‐made local warming caused by energy use and alterations of the natural environment. Various other errors affecting the estimates of long‐term temperature change are described comprehensively in a large number of papers by Tom Karl and his associates at the NOAA National Climate Data Center. The GISS temperature analysis corrects for urban effects by adjusting the long‐term trends of urban stations to be consistent with the trends at nearby rural stations, with urban locations identified either by population or satellite‐observed night lights. In a paper in preparation we demonstrate that the population and night light approaches yield similar results on global average. The additional error caused by factors other than incomplete spatial coverage is estimated to be of the order of 0.1°C on time scales of several decades to a century, this estimate necessarily being partly subjective. The estimated total uncertainty in global mean temperature anomaly with land and ocean data included thus is similar to the error estimate in the first line of Table 1, i.e., the error due to limited spatial coverage when only meteorological stations are included.

Now let’s consider whether we can specify a rank among the recent global annual temperatures, i.e., which year is warmest, second warmest, etc. Figure 1a shows 2009 as the second warmest year, but it is so close to 1998, 2002, 2003, 2006, and 2007 that we must declare these years as being in a virtual tie as the second warmest year. The maximum difference among these in the GISS analysis is ~0.03°C (2009 being the warmest among those years and 2006 the coolest). This range is approximately equal to our 1‐sigma uncertainty of ~0.025°C, which is the reason for stating that these five years are tied for second warmest.

The year 2005 is 0.061°C warmer than 1998 in our analysis. So how certain are we that 2005 was warmer than 1998? Given the standard deviation of ~0.025°C for the estimated error, we can estimate the probability that 1998 was warmer than 2005 as follows. The chance that 1998 is 0.025°C warmer than our estimated value is about (1 – 0.68)/2 = 0.16. The chance that 2005 is 0.025°C cooler than our estimate is also 0.16. The probability of both of these is ~0.03 (3 percent). Integrating over the tail of the distribution and accounting for the 2005‐1998 temperature difference being 0.61°C alters the estimate in opposite directions. For the moment let us just say that the chance that 1998 is warmer than 2005, given our temperature analysis, is at most no more than about 10 percent. Therefore, we can say with a reasonable degree of confidence that 2005 is the warmest year in the period of instrumental data.


Figure 5. (a) global map of December 2009 anomaly, (b) global map of Jun‐Jul‐Aug 2009 anomaly. #4 and #2 indicate that December 2009 and JJA are the 4th and 2nd warmest globally for those periods.

What about the claim that the Earth’s surface has been cooling over the past decade? That issue can be addressed with a far higher degree of confidence, because the error due to incomplete spatial coverage of measurements becomes much smaller when averaged over several years. The 2‐sigma error in the 5‐year running‐mean temperature anomaly shown in Figure 2, is about a factor of two smaller than the annual mean uncertainty, thus 0.02‐0.03°C. Given that the change of 5‐year‐mean global temperature anomaly is about 0.2°C over the past decade, we can conclude that the world has become warmer over the past decade, not cooler.

Why are some people so readily convinced of a false conclusion, that the world is really experiencing a cooling trend? That gullibility probably has a lot to do with regional short‐term temperature fluctuations, which are an order of magnitude larger than global average annual anomalies. Yet many lay people do understand the distinction between regional short‐term anomalies and global trends. For example, here is comment posted by “frogbandit” at 8:38p.m. 1/6/2010 on City Bright blog:

“I wonder about the people who use cold weather to say that the globe is cooling. It forgets that global warming has a global component and that its a trend, not an everyday thing. I hear people down in the lower 48 say its really cold this winter. That ain’t true so far up here in Alaska. Bethel, Alaska, had a brown Christmas. Here in Anchorage, the temperature today is 31[ºF]. I can’t say based on the fact Anchorage and Bethel are warm so far this winter that we have global warming. That would be a really dumb argument to think my weather pattern is being experienced even in the rest of the United States, much less globally.”

What frogbandit is saying is illustrated by the global map of temperature anomalies in December 2009 (Figure 5a). There were strong negative temperature anomalies at middle latitudes in the Northern Hemisphere, as great as ‐8°C in Siberia, averaged over the month. But the temperature anomaly in the Arctic was as great as +7°C. The cold December perhaps reaffirmed an impression gained by Americans from the unusually cool 2009 summer. There was a large region in the United States and Canada in June‐July‐August with a negative temperature anomaly greater than 1°C, the largest negative anomaly on the planet.


Figure 6. Arctic Oscillation (AO) Index. Positive values of the AO index indicate high low pressure in the polar region and thus a tendency for strong zonal winds that minimize cold air outbreaks to middle latitudes. Blue dots are monthly means and the red curve is the 60‐month (5‐year) running mean.

How do these large regional temperature anomalies stack up against an expectation of, and the reality of, global warming? How unusual are these regional negative fluctuations? Do they have any relationship to global warming? Do they contradict global warming?

It is obvious that in December 2009 there was an unusual exchange of polar and mid‐latitude air in the Northern Hemisphere. Arctic air rushed into both North America and Eurasia, and, of course, it was replaced in the polar region by air from middle latitudes. The degree to which Arctic air penetrates into middle latitudes is related to the Arctic Oscillation (AO) index, which is defined by surface atmospheric pressure patterns and is plotted in Figure 6. When the AO index is positive surface pressure is high low in the polar region. This helps the middle latitude jet stream to blow strongly and consistently from west to east, thus keeping cold Arctic air locked in the polar region. When the AO index is negative there tends to be low high pressure in the polar region, weaker zonal winds, and greater movement of frigid polar air into middle latitudes.

Figure 6 shows that December 2009 was the most extreme negative Arctic Oscillation since the 1970s. Although there were ten cases between the early 1960s and mid 1980s with an AO index more extreme than ‐2.5, there were no such extreme cases since then until last month. It is no wonder that the public has become accustomed to the absence of extreme blasts of cold air.


Figure 7. Temperature anomaly from GISS analysis and AO index from NOAA National Weather Service Climate Prediction Center. United States mean refers to the 48 contiguous states.

Figure 7 shows the AO index with greater temporal resolution for two 5‐year periods. It is obvious that there is a high degree of correlation of the AO index with temperature in the United States, with any possible lag between index and temperature anomaly less than the monthly temporal resolution. Large negative anomalies, when they occur, are usually in a winter month. Note that the January 1977 temperature anomaly, mainly located in the Eastern United States, was considerably stronger than the December 2009 anomaly. [There is nothing magic about a 31 day window that coincides with a calendar month, and it could be misleading. It may be more informative to look at a 30‐day running mean and at the Dec‐Jan‐Feb means for the AO index and temperature anomalies.]

The AO index is not so much an explanation for climate anomaly patterns as it is a simple statement of the situation. However, John (Mike) Wallace and colleagues have been able to use the AO description to aid consideration of how the patterns may change as greenhouse gases increase. A number of papers, by Wallace, David Thompson, and others, as well as by Drew Shindell and others at GISS, have pointed out that increasing carbon dioxide causes the stratosphere to cool, in turn causing on average a stronger jet stream and thus a tendency for a more positive Arctic Oscillation. Overall, Figure 6 shows a tendency in the expected sense. The AO is not the only factor that might alter the frequency of Arctic cold air outbreaks. For example, what is the effect of reduced Arctic sea ice on weather patterns? There is not enough empirical evidence since the rapid ice melt of 2007. We conclude only that December 2009 was a highly anomalous month and that its unusual AO can be described as the “cause” of the extreme December weather.

We do not find a basis for expecting frequent repeat occurrences. On the contrary. Figure 6 does show that month‐to‐month fluctuations of the AO are much larger than its long term trend. But temperature change can be caused by greenhouse gases and global warming independent of Arctic Oscillation dynamical effects.


Figure 8. Global maps 4 season temperature anomalies for ~2009. (Note that Dec is December 2008. Base period is 1951‐1980.)


Figure 9. Global maps 4 season temperature anomaly trends for period 1950‐2009.

So let’s look at recent regional temperature anomalies and temperature trends. Figure 8 shows seasonal temperature anomalies for the past year and Figure 9 shows seasonal temperature change since 1950 based on local linear trends. The temperature scales are identical in Figures 8 and 9. The outstanding characteristic in comparing these two figures is that the magnitude of the 60 year change is similar to the magnitude of seasonal anomalies. What this is telling us is that the climate dice are already strongly loaded. The perceptive person who has been around since the 1950s should be able to notice that seasonal mean temperatures are usually greater than they were in the 1950s, although there are still occasional cold seasons.

The magnitude of monthly temperature anomalies is typically 1.5 to 2 times greater than the magnitude of seasonal anomalies. So it is not yet quite so easy to see global warming if one’s figure of merit is monthly mean temperature. And, of course, daily weather fluctuations are much larger than the impact of the global warming trend. The bottom line is this: there is no global cooling trend. For the time being, until humanity brings its greenhouse gas emissions under control, we can expect each decade to be warmer than the preceding one. Weather fluctuations certainly exceed local temperature changes over the past half century. But the perceptive person should be able to see that climate is warming on decadal time scales.

This information needs to be combined with the conclusion that global warming of 1‐2°C has enormous implications for humanity. But that discussion is beyond the scope of this note.


References:
Hansen, J.E., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13345‐13372.
Hansen, J., R. Ruedy, J. Glascoe, and Mki. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30997‐31022.
Hansen, J.E., R. Ruedy, Mki. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23947‐23963.
Hansen, J., Mki. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina‐Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci., 103, 14288‐14293.


L’année passée, 2009, passe pour être la seconde année la plus chaude depuis 130 ans d’enregistrements instrumentaux de la température globale, dans l’analyse de température de surface par l’Institut Goddard pour les études spatiales de la NASA (GISS). L’hémisphère sud bat un record comme le plus chaud pour cette moitié du monde. La température globale moyenne, comme montré dans l’illustration 1a, fut plus chaude de 0,57°C (1°F) que la période climatologique (période de base 1951-1980). L’hémisphère sud, comme montré dans l’illustration 1b, fut plus chaud de 0,49°C (0,88°F) que la période climatologique.

Illustration 1: (a) analyse du GISS pour les changements de la température globale de surface. La barre verticale verte est l’estimation à l’intervalle de confiance de 95% (deux écarts-type) pour le changement annuel de température. (b) Changement des
températures des hémisphères dans l’analyse du GISS. (Période de base 1951-1980. Cette période de base est est systématiquement fixée pour tous les articles du GISS concernant l’analyse de la température – voir les références. La période de base 1961-1990 est utilisée pour les comparaisons avec les analyses publiées du HadCRUT dans les illustrations 3 et 4).

L’enregistrement de l’année globalement la plus chaude, dans la période d’utilisation des mesures instrumentales globales (depuis la fin du XIXème siècle) était 2005. Il est quelques fois avancé que 1998 était la plus chaude. L’origine de cette confusion est discutée ci-après. Il y a un fort degré de variabilité interannuelle (année par année) et décénnale à la fois dans les températures globales et hémisphériques. Sous-tendant cette variabilité, néanmoins, on trouve une tendance au réchauffement de long terme qui devient plus fort et persistant [tenace] au cours des trois dernières décennies. Les tendances de long terme sont plus apparentes quand les températures sont moyennées sur plusieurs années. Les températures en moyennes mobiles sur 60 mois (5 ans) et 132 mois (11 ans) sont montrées dans la figure 2 pour le globe et les hémisphères. La moyenne sur 5 ans est suffisante pour réduire l’effet du cycle climatique tropical El Niño-El Niña. La moyenne sur 11 ans minimise l’effet de la variabilité solaire – la luminosité solaire varie significativement pendant le cycle de tâches solaires, qui est généralement d’une durée de l’ordre de 10-12 ans.

Illustration 2: Températures en moyennes mobiles sur 60 (5 ans) et 132 (11 ans) mois dans l’analyse du GISS pour les changements de température de surface (a) globale et (b) des hémisphères.(période de base 1951-1980).

Il y a une contradiction entre la tendance observée et continue au réchauffement et la perception populaire des tendances climatiques. Ce type de perception inclut fréquemment ces assertions «  Il y a eu un refroidissement global ces dernières 10 années. » « Le réchauffement global s’est arrêté en 1998. » « 1998 est l’année la plus chaude jamais enregistrée. » De telles déclarations ont été répétées si souvent que la plupart des gens les acceptent comme vraies. Néanmoins, selon nos données, ces déclarations ne sont pas correctes.

L’origine de la contradiction se trouve probablement pour partie dans la différence entre les analyses du GISS et du HadCRUT (HadCRUT est une association entre le centre Hadley et l’unité de recherche sur l’analyse de température de l’université de East-Anglia). En effet, le HadCRUT a trouvé que 1998 était l’année la plus chaude enregistrée. De plus, les croyances populaires en un refroidissement sont renforcées par des anomalies froides aux USA à l’été 2009 et dans l’hémisphère nord en décembre 2009.
Nous montrerons d’abord les principales raisons des différences entre les analyses du GISS et du HadCRUT. Nous examinerons ensuite les anomalies régionales de 2009 dans le contexte des températures globales.

Illustration 3: Anomalies de températures en 1998 (colonne de gauche) et 2005 (colonne de droite). Le rang du haut est l’analyse du GISS, celui du milieu est l’analyse du HadCRUT et le rang du bas est l’analyse du GISS masquée [ndt : calée] sur les mêmes zones et résolution que l’analyse du HadCRUT. (La période de base est 1961-1990.)

L’illustration 3 montre les cartes des anomalies de températures du GISS et HadCRUT en 1998 et 2005 relativement à la période 1961-1990 (la période de base usuelle du HadCRUT). Les anomalies de températures sont dans une résolution de 5 en 5 degrés géographiques pour les données du GISS afin qu’elles correspondent à celles de l’analyse du HadCRUT. Dans les deux cartes du bas, nous montrons les données du GISS sous le même masque en termes de répartition géographique et de résolution que celui du HadCRUT. Les données du GISS « sous masque » nous permettent de quantifier la manière dont les différences entre les analyses du GISS et du HadCRUT sont dues à l’interpolation et l’extrapolation des données utilisées dans l’analyse du GISS. Cette analyse affecte
à de nombreuses cases [des modèles] une anomalie de température qui ne contiennent pas de données mesurées, spécifiquement dans des cases qui se trouvent à moins de 1200 km d’une ou plusieurs stations qui ont défini une anomalie de température.

La raison de cet aspect de l’analyse du GISS est basée sur le fait que le schéma d’une anomalie de température tend à se produire à grande échelle. Par exemple, s’il y a un hiver anormalement froid à New-York, il est probablement anormalement froid à Philadelphie aussi. Ce fait suggère qu’il peut être préférable d’affecter une anomalie de température basée sur les stations les plus proches de la case qui n’a aucune observation que d’exclure la case de l’analyse globale. Des tests de cette assertion sont décrits dans nos articles référencés plus bas.



Illustration 4: Anomalies de la température de surface globale relativement à la période de base 1961-1990 pour trois cas : HadCRUT, GISS et anomalies du GISS limitées à l’aire HadCRUT. [Pour obtenir des séries temporelles cohérentes pour les moyennes globales du HadCRUT et du GISS, les résultats mensuels ont été moyennés par régions avec des anomalies de températures définies à l’intérieur de 4 zones de latitudes (90N-25N, 25N-équateur, équateur-25S, 25S-90S) ; la moyenne globale pondère ainsi ces zones en fonction de la vraie surface de ces zones entières, et les moyennes annuelles sont basées sur ces moyennes mensuelles globales.]

L’illustration 4 montre des séries temporelles de température globale pour les analyses du GISS et du HadCRUT, aussi bien que pour l’analyse du GISS masquée sur les régions de données du HadCRUT. Cette illustration révèle que les différences qui se sont développées entre les températures globales du GISS et du HadCRUT ces dernières décennies sont principalement dues à l’extension de l’analyse du GISS à des régions exclues de l’analyse du HadCRUT. Les résultats du GISS et de HadCRUT sont similaires durant
cette période quand les analyses sont circonscrites exactement aux mêmes aires. L’analyse du GISS trouve aussi 1998 comme année la plus chaude, si l’analyse est limité aux données sous le même masque. La question devient alors : quelle est la valeur des interpolations et des extrapolations dans l’analyse du GISS ? Si l’échelle des anomalies de température est ajustée telle que l’anomalie de la moyenne globale est de zéro, alors les schémas des régions chaudes et froides ont un aspect cohérent avec les schémas météorologiques, apportant ainsi un support qualitatif pour l’extension des données. Néanmoins, nous aimerions une mesure quantitative sur l’incertitude de notre estimation pour l’anomalie de la température globale causée par le fait d’une distribution spatiale des mesures incomplète.

Une manière d’estimer cette incertitude, ou possible erreur, peut être d’utiliser les séries temporelles complètes générées par un modèle de climat global ayant déjà fait ses preuves d’une variabilité spatiale et temporelle des températures de surface réaliste. Nous pouvons échantillonner ce jeu de données seulement aux endroits où des stations de mesure existent, et utiliser ce sous-ensemble de données pour estimer le changement de la température globale avec l’analyse du GISS, puis comparer le résultat avec la connaissance « parfaite » de la température globale que nous avons avec les données de chacune des cases.

1880-1900 1900-1950 1960-2008
Stations météorologiques 0.2 0.15 0.08
Index « Land-Ocean » 0.08 0.05 0.05


Tableau 1. Estimation de l’erreur à deux écart-type par période pour les stations météorologiques et l’index « Land-ocean ».

Le tableau 1 montre l’erreur dérivée due à la couverture incomplète des stations. Comme attendu, l’erreur est plus importante aux dates anciennes quand la couverture en stations était plus pauvre. Mais aussi, l’erreur est plus grande quand les données sont disponibles seulement depuis les stations météorologiques, sans mesure depuis des bateaux ou satellites pour les aires océaniques. Dans les décennies récentes, l’incertitude à 2 écarts-type (intervalle de confiance à 95% d’être à l’intérieur de ces valeurs, 2 à 3 % d’être en dehors d’un côté ou de l’autre) a été de 0,05°C. La couverture incomplètes des stations est la première cause d’incertitude pour les années récentes, pour lesquelles les erreurs plus systématiques sont petites, comme le réchauffement urbain.

Des sources additionnelles d’erreurs deviennent importantes quand on compare des anomalies de températures séparées par des périodes plus longues. La source d’erreur de long terme la plus connue est « le réchauffement urbain », un réchauffement local d’origine humaine causé par l’utilisation de l’énergie et les altérations de l’environnement naturel. D’autres erreurs variées, qui affectent les estimations des changements de températures sur le long terme, sont décrites de manière complète dans un grand
nombre d’articles par Tom Karl et ses associés du Centre national de données sur le climat (NCDC) de la NOAA. L’analyse du GISS pour la température corrige l’effet urbain en ajustant les tendances de long terme des stations urbaines de manière cohérente avec les stations rurales des alentours, et en identifiant les densités urbaines par leur population ou par l’observation par les satellites des lumières nocturnes. Dans un article en préparation, nous démontrons que les approches par la population et par les lumières nocturnes donne des résultats similaires sur la moyenne globale. Les erreurs additionnelles causées par des facteurs autres que
la couverture spatiale incomplète est estimée comme étant de l’ordre de 0,1°C sur des échelles de temps de plusieurs décennies à un siècle, cette estimation étant nécessairement partiellement subjective. L’incertitude totale dans les anomalies de température globale moyenne, avec les données « terre et océans » ainsi incluses, est équivalente à l’erreur estimée dans la première ligne du
tableau 1, i.e. l’erreur due à une couverture spatiale limitée quand seules les stations météorologiques sont incluses.

Maintenant, voyons voir si nous pouvons préciser un rang entre les températures annuelles globales récentes, i.e. quelle année est la plus chaude, la seconde plus chaude, etc. L’illustration 1a montre l’année 2009 comme la seconde plus chaude, mais si proche de 1998, 2002, 2003 et 2007 que nous devons considérer toutes ces années comme étant virtuellement la seconde année la plus chaude. La différence maximale entre elles dans l’analyse du GISS est de ~0,03°C (2009 étant la plus chaude et 2003 la plus froide). Cet écart est approximativement égal à notre incertitude à un écart-type de ~0,025°C, ce qui est la raison pour établir que ces années sont toutes la seconde année la plus chaude.

L’année 2005 est plus chaude de 0,061°C que 1998 dans notre analyse. Donc, comment sommes-nous certains que 2005 est plus chaude que 1998 ? Étant donné l’écart-type de ~0,025°C pour l’erreur estimée, nous pouvons estimer la probabilité que 1998 était plus chaude que 2005 comme suit. La chance que 1998 soit 0,025°C plus chaude que notre valeur estimée est d’environ (1-0,68)/2=0,16. La chance que 2005 soit 0,025°C plus froide que notre estimation est aussi de 0,16. La probabilité que ces deux évènements se produisent ensemble est de ~0,03 (3 pourcent). Intégrer la queue de distribution et compter une différence de température entre 2005 et 1998 de 0,61°C change l’estimation dans des directions opposées. Pour le moment, disons juste que la chance pour que 1998 soit plus chaude que 2005, étant donnée notre analyse des températures, est au plus de l’ordre de 10 pourcent. Par conséquent, nous pouvons dire avec un degré raisonnable de confiance que 2005 est l’année la plus chaude dans la période de mesures instrumentales.



Illustration 5. (a) Carte globale de l’anomalie de décembre 2009, (b) carte globale de l’anomalie de juin-juillet-août 2009. #4 et #2 indiquent que décembre 2009 en juin-juillet-août sont les quatrième et deuxième périodes globalement plus chaudes de ce laps de temps.

Que dire à propos de la déclaration comme quoi la surface de la Terre se rafraîchit depuis 10 ans ? Cette question peut être traitée avec beaucoup de confiance, car l’erreur due à une couverture spatiale insuffisante des mesures devient encore plus faible quand on moyenne sur plusieurs années. L’incertitude à deux écarts-type dans la moyenne sur 5 ans de l’anomalie de température montrée dans l’illustration 2, est plus petite d’un facteur 2 que l’incertitude moyenne annuelle, ainsi 0,02-0,03°C. Étant donné que le changement d’une moyenne sur 5 ans de l’anomalie de température est d’environ 0,2°C sur la dernière décennie, nous pouvons conclure que le monde est devenu plus chaud, et non plus froid, depuis la dernière décennie.

Pourquoi des gens sont-ils convaincus d’une conclusion erronée, que le monde est vraiment en train de se refroidir ? Cette naïveté a certainement beaucoup à voir avec les variations régionales de court terme de la température, qui sont d’un plus grand ordre de grandeur que les anomalies annuelles des températures. Même des personnes non averties sont capables de comprendre la différence entre les anomalies locales [ndt : régionales] de court terme et la tendance globale. Par exemple, voici un commentaire posté par « frogbandit » à 20h38 le 6 janvier 2010 le blog de City Bright :

« Je m’étonne de ces gens qui utilisent une météo quotidienne froide pour dire que la Terre se refroidit. On oublie que le réchauffement global a des composantes globales et que c’est une tendance, pas une chose quotidienne. J’entends des gens, au sud que la latitude 48, dire qu’il fait vraiment froid cet hiver. Ce n’est pas si vrai que ça, ici, en Alaska. Bethel, en Alaska, a eu un Noël brun. Ici, à Anchorage, la température d’aujourd’hui est de 31°F [ndt : soient 3°C]. En me basant sur le fait que Bethel et Anchorage sont si chauds cet hiver, je ne peux pas dire que nous avons un réchauffement climatique. Ce serait vraiment un argument idiot de penser que mon schéma de température est répété dans le reste des Etats-Unis, plus ou moins globalement. »

Ce que ‘frogbandit’ dit est illustré par la carte globale des anomalies de températures en décembre 2009 (illustration 5a). Il y a eu de forte anomalies négatives de températures dans les latitudes moyennes de l’hémisphère nord, pas moins de 8°C en Sibérie, moyenné sur le mois. Mais l’anomalie de température en Arctique était, elle, aussi forte que +7°C.

Le décembre froid confirme peut-être une impression acquise par les américains depuis l’été inhabituellement froid de 2009. Il y avait des régions étendues des USA et du Canada en juin-juillet-août avec une anomalie négative de température supérieure à 1°C, la plus grande anomalie sur la planète.


Illustration 6. L’index de l’Oscillation Arctique (AO). Les valeurs positives de l’Index AO indiquent une zone de haute pression sur les régions polaires et ainsi, une tendance à de forts vents zonaux qui minimisent la circulation d’air froid aux latitudes moyennes. Les point bleus sont des moyennes mensuelles et la courbe rouge est la moyenne mobile sur 60 mois (5 ans).

Comment ces larges anomalies régionales de températures se confrontent-elles aux attentes et à la réalité du réchauffement climatique? Ces fluctuations négatives régionales sont-elles inhabituelles? Sont-elles liées avec le réchauffement climatique? Le contredisent-elles?

Il est évident qu’il y a eu en décembre 2009 un échange inhabituel d’air entre le pôle et les latitudes moyennes de l’hémisphère nord. L’air arctique s’est engouffré à la fois sur l’Amérique du nord et l’Eurasie, et, bien sûr, a été remplacé dans ces régions polaires par l’air des latitudes moyennes. La force avec laquelle l’air arctique a pénétré dans les latitudes moyennes est relié avec l’index AO, défini par des schémas de pression atmosphérique de surface et représenté dans l’illustration 6. Quand l’index AO est positif, la pression de surface est élevée dans les régions polaires. Cela permet au jet stream des latitudes moyennes de souffler fortement et constamment d’ouest en est, bloquant ainsi l’air froid au pôle. Quand l’index AO est négatif, il y a une tendance aux basses pressions dans les régions polaires, un vent zonal plus faible, et de plus grands mouvements d’air glacé vers les latitudes moyennes.

L’illustration 6 montre que décembre 2009 a vu la valeur de l’index AO la plus extrêmement négative depuis les années 70. Malgré le fait qu’il y ait eu une dizaine de cas d’index AO aussi extrêmes que -2,5 entre les années 60 et les années 80, il n’y a rien eu d’aussi extrême que le mois dernier. Ce n’est pas étonnant que les gens aient été accoutumés à une absence de ces coups de froid extrêmes.


Illustration 7. Anomalie de températures issu de l’analyse du GISS et Index AO du NWSCPC de la NOAA. La moyenne pour les Etats-Unis fait référence aux 48 états contigus.

L’illustration 7 montre l’index AO avec une résolution temporelle plus grande pour deux périodes de 5 ans. Il est évident qu’il y a un fort degré de corrélation entre l’index AO et les températures des Etats-Unis, avec un décalage possible entre l’index et les anomalies de températures inférieur à la résolution termporelle mensuelle. Les anomalies largement négatives, quand elles arrivent, sont souvent pendant les mois d’hiver. Il faut noter que l’anomalie de températures de janvier 1977, principalement située dans les états de l’est, fut considérablement plus forte que celle de décembre 2009. [cela n’a rien de magique quand une fenêtre de 31 jours coincide avec les jours calendaires du mois, et cela peut être trompeur. Il serait plus informatif de regarder la moyenne mobile sur 30 jours et la moyenne de l’index AO et des températures sur décembre-janvier-février.]

L’index AO n’est pas tant une explication pour ces schémas d’anomalies climatiques qu’un simple état de fait de la situation. Cependant, John (Mike) Wallace et ses collègues ont été capable d’utiliser la description de l’index AO pour aider à comprendre comment ces schémas peuvent changer en cas d’augmentation de gaz à effet de serre. Un certain nombre d’articles, par Wallace, David Thompson et d’autres, aussi bien que par Drew Shindell et d’autres au GISS,
ont montré que l’augmentation de gaz carbonique refroidit la stratosphère, ce qui cause en moyenne un jet stream plus puissant, et ainsi une tendance pour une oscillation arctique (AO) plus positive.

Globalement, l’illustration 6 montre une tendance selon le sens attendu. L’AO n’est pas le seul facteur qui altère la fréquence des épisodes d’air froid de l’Arctique. Par exemple, quel est l’effet d’une glace de mer réduite sur le schéma climatologique? Il n’y a pas assez de preuves empiriques depuis la fonte rapide de la glace de 2007. Nous pouvons seulement conclure que décembre 2009 était un mois hautement anormal et que cette oscillation arctique inhabituelle peut décrire la « cause » du climat extrême de décembre.

Nous n’avons pas trouvé de base pour nous attendre à de fréquentes répétitions de ce phénomène. Tout au contraire. L’illustration 6 montre que les fluctuations mois-par-mois de l’AO sont plus étendues que la tendance de long terme. Mais les changements de températures peuvent être causés par les gaz à effet de serre et le réchauffement global être indépendant des effets dynamiques de l’Oscillation Arctique.




Illustration 8. Carte globale des anomalies de températures pour les 4 saisons pour ~2009. (noter que Dec est décembre 2008. La période de base est 1951-1980.)




Illustration 9. Carte globale des tendances des anomalies de températures pour les 4 saisons pour la période 1950-2009.

Maintenant, regardons les anomalies de températures régionales récentes et les tendances des températures. L’illustration 8 montre les anomalies de températures saisonnières pour l’année passée et l’illustration 9 montre les changements des anomalies de températures depuis 1950 basés sur une tendance linéaire locale. Les échelles de températures sont les mêmes sur les illustrations 8 et 9. La caractéristique remarquable quand on compare ces deux illustrations est que la magnitude des changements sur 60 ans est similaire à la magnitude des anomalies saisonnières. Ce que cela nous raconte, c’est que les dés climatiques sont déjà sérieusement lancés. La personne perspicace qui est là depuis les années 50 sera capable de noter que les températures moyennes saisonnières sont actuellement plus élevées que celles des années 50, bien qu’il y ait encore occasionnellement des saisons froides.

La magnitude des anomalies mensuelles de températures est couramment 1,5 à 2 fois plus grande que la magnitude des anomalies saisonnières. Du coup, ce n’est pas encore si facile de voir le réchauffement global si sa principale illustration est la température moyenne mensuelle. Et, bien sûr, les fluctuations du temps au quotidien sont bien plus importantes que l’impact de la tendance globale du réchauffement.

Les bases sont celles-ci : il n’y a pas de tendance au refroidissement global.

A l’heure actuelle, jusqu’à ce que l’humanité mette ses émissions de gaz à effet de serre sous contrôle, nous pouvons nous attendre à ce que chaque décennie soit plus chaude que la précédente. Les fluctuations du temps qu’il fait excèdent certainement les changements locaux de températures du dernier demi-siècle. Mais la personne perspicace verra bien que le climat se réchauffe à l’échelle des décennies.

Cette information a encore besoin d’être mise en relation avec la conclusion qu’un réchauffement global de 1 à 2°C a d’énormes implications pour l’humanité. Mais cette discussion est au-delà de la portée de cet article.


Références:
Hansen, J.E., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13345-13372.
Hansen, J., R. Ruedy, J. Glascoe, and Mki. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30997-31022.
Hansen, J.E., R. Ruedy, Mki. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106, 23947-23963.
Hansen, J., Mki. Sato, R. Ruedy, K. Lo, D.W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci., 103, 14288-14293.


Filed Under: Climate Science, Instrumental Record

Reader Interactions

932 Responses to "2009 temperatures by Jim Hansen"

Comments pagination

« Previous 1 … 13 14 15 16 17 … 19 Next »
  1. Walt Bennett says

    28 Jan 2010 at 12:10 AM

    (I will also point out that there are zero historical examples of humans embracing a behavior which is more costly and less efficient than their current behaviors, especially when those behaviors are essential to their lives.)

  2. Completely Fed Up says

    28 Jan 2010 at 6:38 AM

    “That was my point. The article I cited in 682 plausibly supports both of our positions”

    How can it when you assert “That is nonsense.” to my position?

    Were you caught out and now backpeddaling for all your worth to hide it?

    There have been effects that have reduced wheat production.

    They are absolutely known because farmers KNOW how their crops respond to changes in environment and we KNOW from measurements what those changes have been.

    Likewise we KNOW that CO2 has an effect on the climate and that without this effect the climate as it had been would have seen a weather record significantly different in toto to the one seen in the actual records.

    These changes are KNOWN to reduce wheat yields and many other staple crops worldwide.

    Unless the farmers are in on “teh conspirasy” too…

    “You missed the point”

    So what was the point, or did you push that out there to leave the lingering smell of your own superiority out there without the terrible burden of showing it?

    Because your snideness didn’t answer the question: how are farmers going to plant more of it?

    Seems like you’re avoiding the point.

  3. Tilo Reber says

    28 Jan 2010 at 10:41 AM

    Completely: #690
    “PS why didn’t you stay on subject? 11 years isn’t climate.”

    Completely, you might want to mention that to Dr. Hansen when he compares individual years like 98 and 05. And also when he speaks about the warmest decade on record.

  4. Lynn Vincentnathan says

    28 Jan 2010 at 12:42 PM

    #682, Don, I’d sincerely hope farmers are doing all they can to adapt.

    However, this doesn’t reduce the need to mitigate GW one iota. In fact, people, including farmers, who put sincere efforts at reducing their GHG emissions through energy/resource efficiency/conservation and alt energy have found (often to their surprise, as with me) that they are saving money without lowering living standards or productivity.

    For instance 3M’s 3P program — Pollution Prevention Pays. They were able to reduce pollution substantially AND save $millions doing so. The CEO had simply asked all the employees (from engineers to assembly line workers) to look for ways to reduce that wouldn’t cost them too much, so as to meet regs, and when they did, they came up with with all these money-savers. When they CEO asked why they hadn’t come up with the money-savers before, they said it wasn’t put to them that way.

    Then there is DOW’s WRAP – Waste Reduction Always Pays.

    Now these companies are far from squeaky clean, and they could probably find even more environmental money-savers, but if they can do it, why can’t others?

    I suggest everyone in America give it the ole American try, and then we might really be world leaders.

    Let’s not wimp out.

  5. Tim Jones says

    28 Jan 2010 at 2:44 PM

    Re; 692 Don Shor says:
    “You missed the point. But never mind.”

    Global warming is much more likely to negatively influence food production than some of y’all are letting on with your endless quibbling.

    High temperatures can wipe out cereal and vegetable crops as well as livestock. Droughts are devastating. So are floods. Floods coming after droughts are ruinous. As these sorts of events become more commonplace, who’s going to take a chance on a good year?

    It’s incredible that the US Farm Bureau has come out against action to attenuate climate change.

    “Scientists Request Meeting with American Farm Bureau President to Discuss Group’s ‘Inaccurate’ Stance on Climate Change”
    http://www.ucsusa.org/news/press_release/scientists-letter-to-farm-bureau-0331.html
    January 7, 2010 

    Michigan to Face More Heat Waves, Flooding, and Reduced Crop Yields with Unchecked Climate Change
    http://www.ucsusa.org/news/press_release/michigan-climate-impacts-0273.html
    September 9, 2009
     
    Congress Considering Legislation that Could Help Michigan and the Rest of the Nation Avoid Worst Consequences of Climate Change

    CHICAGO (Sept. 9, 2009) — If the United States does not significantly curb heat-trapping emissions, global warming will seriously damage Michigan’s climate and economy, according to a new peer-reviewed report released today by the Union of Concerned Scientists (UCS).

    http://www.ucsusa.org/global_warming/science_and_impacts/impacts/climate-change-midwest.html

    The report found that a combination of clean energy policies—such as those currently under consideration by the U.S. Senate—would help blunt the extent and severity of global warming in Michigan and across the country. 

    “The Midwest climate is already changing. Over the past 50 years, we’ve seen higher average annual temperatures, more frequent downpours, longer growing seasons, and fewer cold snaps,” said Katharine Hayhoe, an atmospheric scientist at Texas Tech University and a co-author of the report. “The likely changes documented in this report are sobering. The good news is that we can avoid the worst of them if we substantially cut global warming emissions and start doing it now.”
    […]

  6. Tim Jones says

    29 Jan 2010 at 12:55 AM

    Taking a lesson from denialists and how some arrive at conclusions I’m able to report that Richard Steckis has conceded the point that ocean acidification is a serious problem. After all, if he had not I’m sure he’d be all gang-busters to set the record straight by now.

    Last week I offered Mr Steckis 2 simple ways he could settle the debate.

    1. “…how about categorizing all forms of sea life as its effected by increasing concentrations of CO2 in the ocean?”

    I made it easier since he’s such a busy guy:

    2. “If he wants to prove he’s right, prove that ocean acidification is a crock, then he could do an _inventory_ of the ocean’s animal and plant taxa by genus and species. He could classify them by degree of impact of CO2 poisoning for various life stages and various carbonic acid concentrations.

    This would settle it.”

    Both non-starters I’m afraid. I guess we are just supposed to take his word for it since he actually once studied and all.

    Richard replied to comment #564 with #604 to dshogaza, writing, “Unlike you, I have a peer-reviewed publication record as both primary and co-author. For your information I was studying toward my Ph.D….

    What a timely subject for a wonderful and informative dissertation, “Ocean Acidification: Nothing to Worry About Here. Move On.”

    But what answer hear we? #603 “When all else fails good old Ray resorts to the Ad-Hom attack. You are so predictable.”

    And so too has Mr Steckis become predictable – hardly interested in adding anything meaningful to the discussion, or defending his grasp of reality but rather more interested in being accusatory and argumentative for its own sake.

    So it is with these denialists, the only time they’re useful is when they go out on a limb with a saw.

  7. 4TimesAYear says

    29 Jan 2010 at 1:46 AM

    Pete Best – that was an earthquake that had nothing to do with weather or climate.

  8. Sekerob says

    29 Jan 2010 at 2:56 AM

    For Jim Hansen and Mark Serreze:

    The riddle is growing. Can’t understand how global land temp is the exact middle of the NH and SH values when land distribution is wholly not equal for what’s below and above the equator (CRUTEMP). Same thing for SST anomalies as published by NOAA:

    November 2009
    NH 0.5330C+
    SH 0.5323C+
    GL 0.5241C+

    A dumb average would be 0.5327C+

    December 2009
    NH 0.5516C+
    SH 0.5448C+
    GL 0.5398C+

    Another dumb average would be 0.5482C+

    I’m sure there a simple explanation (a slap of the forehead one), but the global SST value, albeit something the tip of my nose might not feel, outside the NH and SH SSTs is well, strange the least. The Annual figure is also, hmmm suspect, if one weights the total ocean/sea surface of the two halves on our sphere.

  9. Sekerob says

    29 Jan 2010 at 3:01 AM

    PS: Of course it could be the wrong data sets were loaded. I’m getting them from here: ftp://ftp.ncdc.noaa.gov/pub/data/anomalies/

  10. Completely Fed Up says

    29 Jan 2010 at 8:23 AM

    “703
    Tilo Reber says:
    28 January 2010 at 10:41 AM

    Completely: #690
    “PS why didn’t you stay on subject? 11 years isn’t climate.”

    Completely, you might want to mention that to Dr. Hansen when he compares individual years like 98 and 05.”

    Hansen doesn’t call them climate.

    So why should I tell him something that he knows and has never countered with a statement to the contrary?

  11. Completely Fed Up says

    29 Jan 2010 at 8:24 AM

    “The riddle is growing. Can’t understand how global land temp is the exact middle of the NH and SH values when land distribution is wholly not equal”

    Here’s why:

    http://en.wikipedia.org/wiki/Hemisphere

    Half a sphere.

  12. Completely Fed Up says

    29 Jan 2010 at 8:32 AM

    “701
    Walt Bennett says:
    28 January 2010 at 12:10 AM

    (I will also point out that there are zero historical examples of humans embracing a behavior which is more costly and less efficient than their current behaviors”

    In fact, the use of agribusiness chemicals HAS caused a farming process that is more expensive and less efficient.

    In the northern parts of India and in the forested areas of Zaire the old ways had the farmers being given mechanical harvesters and agribusiness chemicals. The machines broke down and they don’t have the parts, training or money to fix them. The chemicals are sold and the price fixed from foreign needs, not theirs. It also ignored any local knowledge on how to farm.

    But as a change they tried recently to use local knowledge, no chemicals and animal/human power. The yields actually increased.

    Seems like the first years after chemical treatment increased yields greatly but each year you needed more chemicals for the same effect. These farmers were too poor but “had” to use chemicals because they were told that yields would drop even more if they stopped.

    They lost the cost of exporting money they needed to a foreign company and increased yields.

    They don’t have thousand-acre farms to work, so mechanisation to reduce human effort isn’t needed and human effort is cheap and renewable. They tend to fix themselves.

    So your assertion is wrong.

    Not to mention that weaning off fossil fuels is not shown to result in a less efficient or more expensive life or even a reduction in living. In fact, living conditions may increase, much like the clean air acts “cost” some money but saved more in lives and illnesses AND made life better for the people in the cities.

  13. Completely Fed Up says

    29 Jan 2010 at 8:38 AM

    RS: “If a methane pulse is to occur and it will some time in the future, it will not be because of us but will occur through a natural mechanism.”

    Yes, the natural heating of the oceans causing the breakup of the conditional stability of the methane clathrates.

    That heating being the natural result of increasing CO2.

    That increase in CO2 being the natural result of burning trillions of tons of fossil fuels.

    The burning of trillions of tons of fossil fuels being a natural result of us burning them.

    But we don’t naturally burn fossil fuels.

    So the methane clathrates are a result of our unnatural actions.

  14. Kevin McKinney says

    29 Jan 2010 at 8:42 AM

    Tilo Dr. Hansen was responding to bullsh*t, not initiating a topic. As I’m doing now.

    From the GISS press release:

    In total, average global temperatures have increased by about 0.8°C (1.5°F) since 1880.

    “That’s the important number to keep in mind,” said Gavin Schmidt, another GISS climatologist.

    But then, you’ve all this before, haven’t you?

  15. Walt Bennett says

    29 Jan 2010 at 9:06 AM

    Re: #712

    You failed to address mass human behavior, and your last paragraph utterly ignored the intermediate cost factor.

  16. Lynn Vincentnathan says

    29 Jan 2010 at 10:03 AM

    I need some answer on this. Received a chain email with photos of ribboned Antarctic icebergs, claiming they formed because 2008 was the coldest year (didn’t specify since when). But I need give some better background picture (like “It was cold in Antarctic that year bec…,” or “It was cold in Antarctic, but it was above normal elsewhere in ____ & ____”)

    Here is the caption:

    STRIPED ICEBERGS

    Icebergs in the Antarctic area sometimes have stripes, formed by
    layers of snow that react to different conditions.

    Blue stripes are often created when a crevice in the ice sheet
    fills up with melt water and freezes so quickly that no bubbles form.

    When an iceberg falls into the sea, a layer of salty seawater can
    freeze to the underside. If this is rich in algae, it can form a
    green stripe.

    Brown, black and yellow lines are caused by sediment, picked up
    when the ice sheet grinds downhill towards the sea.

    These pictures are available because 2008 has been the coldest winter.

  17. Ray Ladbury says

    29 Jan 2010 at 10:04 AM

    Steckis says of the proposed mechanism for the onset of the PETM:
    “Interesting that you use the word putative which means supposed. In other words you are saying that it is not the known mechanism for PETM but a theoretical mechanism.”

    Ah, the old “It’s only a theory,” gambit. You sure you haven’t been hanging out over at Answers in Genesis? I suppose the PETM could have been the result of some Martian heat ray and they dumped all that methane into the atmosphere just to throw us off, huh? Thanks, Richard, but I’ll take the best scientific explanation and leave science fiction to you.

    Steckis then says “If a methane pulse is to occur and it will some time in the future, it will not be because of us but will occur through a natural mechanism.”

    Wow, Richard, such certainty. I’m sure you have some dazzling analysis or peer-reviewed research to back it up. Why not share it?

  18. Sekerob says

    29 Jan 2010 at 10:08 AM

    CFU 711, you’re such a smart cookie… Lets try again for you: If Australia’s northern 2rds have a 1C anomaly and the southern 1rd has a 0.5C anomaly… how much would the combined anomaly be?

  19. Completely Fed Up says

    29 Jan 2010 at 10:28 AM

    “and your last paragraph utterly ignored the intermediate cost factor.”

    The immediate cost of what?

    In fact, why do people become millionaires when you can’t spend it in your lifetime?

    It can’t be the immediate benefit.

    In fact all the rhetoric is about how they MUST be allowed to let thier heirs inherit.

    Funny how it’s all about the kids when they’re dead at the time and can’t spend a nickel.

    So if people are worried about what their children inherit, how about the immense cost of not saving now?

    After all, buying a house on a mort gage is a huge IMMEDIATE cost, but in the long term it’s cheaper than renting. And your children inherit a house.

    Or you could go millions in debt and leave your children with crushing debt to deal with.

    You would propose that it’s fine to leave the next generation with a debt because it’s cheaper for you to live a deficit life.

  20. Lynn Vincentnathan says

    29 Jan 2010 at 10:30 AM

    RE #706, the mid-summer heat would be enough (even without the floods and droughts — which would be the final nails in the crop coffins) to pretty much do in Midwestern agriculture once GW really starts kicking in (even just with what’s in the pipes — the 2.4 C warming see Ramanathan & Feng, 2008 below)

    This is just a small scenario of what might happen. I’m in the Rio Grande Valley of Texas, latitude 26.3 N. There are 2 planting seasons — in the Sept/Oct and in late Jan-Feb-Mar. It’s just too hot for things to grow (or grow well) in summer; the goal is just to keep the plants alive with irrigation water. And there isn’t as much sun in the winter (and the temps do get down a bit), so things don’t grow well in winter either; the goal is just to keep them alive. This year it was disaster with a few freezing days due to this strongly negative Arctic oscillation anomaly; pretty much did in our newly planted vegetable garden, except for the spinach (luckily my husband kept some potted plantlings in the garage and planted them a couple of weeks ago, so we’ll see).

    Imagine up North in the Midwest once the warming (heating) really kicks in by around 2050, where there is even less sun in winter, and longer days in summer with the heat and sun mid-summer wreaking havoc on the hottest days. I guess farmers could get some massive umbrella-tarps and draw out even more water from the Ogallala aquifer to keep a fine mist on the crops…that would be an adaption to GW.
    _________
    Ramanathan, V., and Y. Feng. 2008. “On Avoiding Dangerous Anthropogenic Interference with the Climate System: Formidable Challenges Ahead.” Proceedings of the National Academy of Sciences 105.38: 14245-14250. http://www.pnas.org/content/105/38/14245.full

  21. Ray Ladbury says

    29 Jan 2010 at 10:48 AM

    Walt Bennett,
    I understand that you are eager to get on with the risk mitigation phase of the climate crisis. I agree that it is well past time for that. However, there are still 3 important obstacles to effective risk mitigation for climate. The first is that any mitigation strategy must be based on the science as best we understand it–and there is still a large number of people who do not understand the science and so reject it.

    The second obstacle is more fundamental: We cannot mitigate until we can bound the risk at some reasonable confidence level. However, the risk escalates extremely rapidly with increasing temperature, and the temperature increase we can expect depends on a lot of things we do not know–
    1)a usable upper bound for climate sensitivity (the current bound of the 90% confidence interval of 4.5 degrees per doubling gives pretty severe consequences for even 3x preindustrial CO2)
    2)how much CO2 we will emit in the future (current known reserves of major fossil fuel sources could take us well over 1000 ppmv)
    3)possible tipping points that would release large amounts of ghgs

    The third problem is that mechanisms proposed for mitigation are precisely those areas of climate where we have the least understanding. This makes it extremely difficult to validate their effectiveness and to anticipate and mitigate undesirable side effects (e.g. increased ocean acidification).

    Since we cannot at present bound the risk, the only responsible risk mitigation strategy is risk avoidance–and that means limiting CO2 emissions to the extent possible while we work to bound risk better and develop and validate effective mitigations.

  22. Phil. Felton says

    29 Jan 2010 at 11:33 AM

    Re #716

    Lynn the photos are genuine and are all over the web, they have nothing to do with 2008 being a cold winter however. They have been accompanied in emails with images purporting to show waves freezing instantly in mid air which has been debunked in many places!
    See here for example: http://www.inhabitots.com/2009/10/10/behold-natures-art-striped-icebergs-and-frozen-waves-of-antarctica/

  23. flxible says

    29 Jan 2010 at 11:54 AM

    Lynn – might point out that those icebergs weren’t created in one year [although the e-mail originated in spring ’08, but are the result of multiyear processes, nor are oddly colored ones unique to 2008 or “the coldest winter” colored bergs

  24. Didactylos says

    29 Jan 2010 at 11:59 AM

    Lynn, you might want to counter that nonsense by mentioning a) how it takes hundreds, even thousands of years for glacial ice or floating ice shelves to form, and b) that Antarctica (and Greenland) is losing huge ice shelves due to catastrophic collapse from warming temperatures.

    Those ice shelves were often thousands of years old. That’s how long it will take to replace them, too.

  25. Tim Jones says

    29 Jan 2010 at 12:04 PM

    Re: 707
    4TimesAYear says:
    29 January 2010
    Pete Best – that was an earthquake that had nothing to do with weather or climate.

    Not so fast…

    Fire and Ice: Melting Glaciers Trigger Earthquakes, Tsunamis and Volcanos
    http://environment.about.com/od/globalwarming/a/earthquakes.htm
    Geologists Say Global Warming Expected to Cause Many New Seismic Events
    By Larry West,

    Melting Ice Sheets Can Cause Earthquakes, Study Finds
    http://news.nationalgeographic.com/news/2008/03/080314-warming-quakes.html
    Mason Inman
    for National Geographic News
    March 14, 2008

    Climate change could cause earthquakes and volcanic eruptions, scientists say
    http://www.climateemergency.org/joomla/index.php?option=com_content&task=view&id=44&Itemid=110
    Canadian Press
    By: DENNIS BUECKERT
    July 4, 2006

  26. Tim Jones says

    29 Jan 2010 at 12:07 PM

    Re: 716 Lynn Vincentnathan says:
    29 January 2010
    I need some answer on this. Received a chain email with photos of ribboned Antarctic icebergs…”

    Fascinating. The images depict different things that happen to icebergs.

    I was on the Antarctic Peninsula in January 2009 and saw nothing
    like these incredibly beautiful images.

    See:
    http://www.polarconservation.org/news/pco-news-articles/iceberg-in-rainbow-colours
    &
    http://www.snopes.com/photos/natural/stripedicebergs.asp#photo2
    &
    http://www.francescjosep.net/tag/curiosa/
    &
    http://www.inhabitots.com/2009/10/10/behold-natures-art-striped-icebergs-and-frozen-waves-of-antarctica/
    &
    http://www.telegraph.co.uk/news/worldnews/1582098/Rainbow-iceberg-in-the-Antarctic.html
    &
    http://trance.nu/v4/forum/viewtopic.php?t=151899

    image:
    http://img.dailymail.co.uk/i/pix/2008/03_03/Berg2BAR1703_800x545.jpg
    from:
    http://www.dailymail.co.uk/sciencetech/article-536928/Revealed-The-Antarctic-iceberg-looks-like-giant-humbug.html

    Commentary:
    http://www.hoax-slayer.com/striped-icebergs.shtml

  27. Don Shor says

    29 Jan 2010 at 12:34 PM

    716: Interesting, Lynn. That picture is on snopes.com, but it doesn’t have anything to do with “the coldest winter.” They’d probably be interested in this mutation of the email.

  28. Doug Bostrom says

    29 Jan 2010 at 12:35 PM

    Richard Steckis says: 27 January 2010 at 8:53 PM

    “If a methane pulse is to occur and it will some time in the future, it will not be because of us but will occur through a natural mechanism.”

    Just because. Bank on it.

  29. CM says

    29 Jan 2010 at 12:52 PM

    Lynn #716, scroll down to “Global highlights” at
    http://www.noaanews.noaa.gov/stories2008/20080313_coolest.html

  30. Hank Roberts says

    29 Jan 2010 at 12:57 PM

    > zero historical examples of humans embracing a behavior which is more
    > costly and less efficient than their current behaviors, especially when
    > those behaviors are essential to their lives

    Your education omitted altruism?

    Ever heard of Leningrad?

    “During the terrible starvation of the siege …. One of his assistants even died of starvation … surrounded by 200,000 types of plant seed, most of them edible. …”
    http://www.inyourpocket.com/russia/st-petersburg/The-Siege-of-Leningrad-70962f?more=1

  31. Walt Bennett says

    29 Jan 2010 at 1:33 PM

    Re: #716

    I’m sure you would agree that it makes sense that when an ice sheet breaks up it forms more icebergs. Therefore, one stage of warming in the Antarctic is just such an effect: Ice sheets shatter, creating many icebergs.

    I’m sure you’ll find that to be the actual explanation. Coastal regions of the Antarctic are among the fastest warming on the planet.

  32. Completely Fed Up says

    29 Jan 2010 at 1:35 PM

    re #715 and you’ve merely stated that mass human behaviour is the way you say it is.

    If it were true, please explain Live Aid and the more recent work in Haiti.

  33. Sou says

    29 Jan 2010 at 2:26 PM

    @Lynn #716 – Are these the photographs?
    http://www.snopes.com/photos/natural/antarcticwave.asp
    If so, they were taken in 2002. I’ve read there is an email doing the rounds again along the lines you’ve quoted.

    Regarding the temperature in Antarctica – I don’t know if 2008 was an especially cold year down there or not. You can check the following link for some Australian stations:

    http://www.bom.gov.au/weather/ant/

  34. Smitty says

    29 Jan 2010 at 2:45 PM

    @Lynn Vincentnathan”
    http://www.snopes.com/photos/natural/stripedicebergs.asp
    Flagged as true. The article is verbatim, except without the last line in bold.It is an actual natural phenomenon, but is not evidence related to a colder than average winter.
    The snopes article links to this research site with more breath-taking photos and interesting facts. http://www.aad.gov.au/default.asp?casid=37157

  35. Hank Roberts says

    29 Jan 2010 at 3:00 PM

    > STRIPED ICEBERGS …
    > Received a chain email …

    http://www.snopes.com/photos/natural/antarcticwave.asp

    Snopes has the explanation of the pictures, description of the false claims attached to them in the hoax chain email, and a link to the origina images.

  36. Hank Roberts says

    29 Jan 2010 at 3:02 PM

    > STRIPED ICEBERGS
    Here’s how I looked that up:
    http://www.google.com/search?q=Brown%2C+black+and+yellow+lines+are+caused+by+sediment%2C+picked+up+when+the+ice+sheet+grinds+downhill+towards+the+sea.++These+pictures+are+available+because+2008+has+been+the+coldest+winter

  37. Kevin McKinney says

    29 Jan 2010 at 4:22 PM

    What’s the question, Lynn? The causation claimed seems like a total non sequitur. (Icebergs form all the time, after all, not just in 2008. And how do we “know” when these bergs calved, anyway?)

  38. Sou says

    29 Jan 2010 at 11:06 PM

    Looks as if Tilo R has moved his musings on Hansen’s paper to WUWT, where the level of adulation for him probably exceeds that here. (Haven’t read his article or the comments it’s elicited, just guessing!)

  39. Hank Roberts says

    30 Jan 2010 at 12:01 AM

    Good update on Pine Island in a recent topic at AccuWeather:
    http://global-warming.accuweather.com/2010/01/whats_the_deal_with_antarctica_1.html
    (usual septic comments of course)

  40. Lynn Vincentnathan says

    30 Jan 2010 at 2:18 PM

    Thanks to you all re the striped icebergs. Before responses came in (I needed to nip it in the bud), I wrote my friend:

    Those are beautiful photos. However the message may have been a bit misleading to laypersons who don’t know about climate science…

    I checked to see if the Antarctic had indeed been “the coldest” in 2008, and since when. I know that climate scientists predicted some parts of the Antarctic to get a bit colder during this early phase in global warming, while other parts were predicted to get warmer, and while other parts of the world were predicted to get a lot warmer, for an average warming. So the 2008 map does show some parts of the Antarctic cooler than the 1950-1980 baseline average, while other parts warmer; and also the newly released 2009 map shows nearly all parts warmer (as I had been hearing, but had not seen the maps). Also the last page is for the 2000-2009 decade on the whole, since it is not good just to look at one year (climate, as opposed to weather, is a composite of many statistics). Attached are the maps.

    So while the iceberg photos you sent are truly spectacular, the sender probably should have put that “coldest year” in context, since many people are dying from global warming, especially in the poorest nations, and many more will be dying on into the future, while some people here in the U.S. continue to deny any culpability (just like Adam and the apple story, or Cain re his brother, Abel). I sure hope that wasn’t the underlying message of those striped iceberg photos.

    & I attached a sheet of maps from:
    http://earthobservatory.nasa.gov/IOTD/view.php?id=36699
    & http://earthobservatory.nasa.gov/IOTD/view.php?id=42392

    After reading your helpful comments, I sent her another email with some of their insights in it.

    I’ve also written to Snopes that this is a meme — the photos are true and beautiful, but the message with some emails (that they are due to 2008 being the coldest) are false. People send them bec they are beautiful, along with the implicit climate denialist message.

  41. Walt Bennett says

    30 Jan 2010 at 7:16 PM

    Re: #721

    Ray,

    Risk-avoidance is a dead letter.

    Surely you realize that.

  42. Walt Bennett says

    30 Jan 2010 at 7:18 PM

    Re: #732

    Examples of people gathering to hear music is supposed to convince me that the mass of humanity will submit to less energy at greater cost?

  43. Alexei Ivanov says

    4 Feb 2010 at 2:22 AM

    My previous comment was not posted, because the system has detected it as spam message.
    The comment was that you should check the fact about frozen Niagara in 1911 (Figure 1 in the pdf version). This statement about frozen Niagara seems to be incorrect. If you let me post here links to other web sites, I’ll give references to discussion of this problem.
    Niagara Falls stopped in March 1848. However it was related not with anomalously low temperature, but with an ice dam on Lake Eri!

  44. Bill says

    5 Feb 2010 at 1:17 PM

    http://www.ncdc.noaa.gov/sotc/get-file.php?report=national&image=timeseries02&byear=2009&bmonth=10&year=2009&month=10&ext=gif&id=110-00

    As a non-climate scientist, I’m still intrigued by datasets/graphs like this one. I believe that the data for Nov and Dec show the same ‘up and down’ temperatures over a century or so? Thanks for any help ?

  45. Completely Fed Up says

    5 Feb 2010 at 1:35 PM

    “I believe that the data for Nov and Dec show the same ‘up and down’ temperatures over a century or so?”

    Yes, because we still have weather, Bill.

    What? Did you expect the line to straighten out like pulling on a wrinkled sheet or something???

  46. Completely Fed Up says

    5 Feb 2010 at 1:37 PM

    re Walt: Of course I don’t expect YOU to believe that. Because you hate other people if they get in your way and to justify it you project that onto everyone else so that it’s “everybody else does it, so why not me?”-justified.

  47. Ray Ladbury says

    5 Feb 2010 at 2:04 PM

    Walt says, “Risk-avoidance is a dead letter.”

    In saying this, you are saying that we cannot carry out proper risk management strategy. And since risk avoidance is the only viable strategy at this point, you are in effect saying nothing can be done. I do not accept this.

    At the very least, we have to reduce consumption to buy time for coming up with geoengineering and other risk reductions strategies.

    Or perhaps if you know of any viable strategies, you could share them.

  48. Ken W says

    5 Feb 2010 at 2:29 PM

    Bill (744), keep in mind that the contiguous US only accounts for about 1.5% of the global surface area and the warming isn’t distributed evenly around the planet. Perhaps this chart from the same site you linked too will help:

    http://www.ncdc.noaa.gov/img/climate/research/global-jan-dec-error-bar-pg.gif

  49. Bill says

    5 Feb 2010 at 2:59 PM

    Thanks for the explanation, thats clearer for me. Can I conclude that the contiguous USA has not warmed on average,over the last 100+ years, but the ocean has ?

  50. Kees van der Leun says

    5 Feb 2010 at 4:44 PM

    Paul Klemencic (183): Yes, indeed: Last month was the hottest January globally in 30 years of UAH satellite measurements: http://bit.ly/HotJan. Anomaly +0.72 C

« Older Comments
Newer Comments »

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Site updates etc.
  • Raising Climate Literacy
  • Unforced variations: Nov 2025
  • High-resolution ‘fingerprint’ images reveal a weakening Atlantic Ocean circulation (AMOC)
  • Unforced variations: Oct 2025
  • “But you said the ice was going to disappear in 10 years!”

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • Susan Anderson on Raising Climate Literacy
  • Ray Ladbury on Unforced variations: Nov 2025
  • Susan Anderson on Unforced variations: Nov 2025
  • Wpml etal on Site updates etc.
  • Piotr on High-resolution ‘fingerprint’ images reveal a weakening Atlantic Ocean circulation (AMOC)
  • Barton Paul Levenson on Unforced variations: Nov 2025
  • David on Unforced variations: Nov 2025
  • David on Unforced variations: Nov 2025
  • Atomsk's Sanakan on Unforced variations: Nov 2025
  • David on Unforced variations: Nov 2025
  • David on Unforced variations: Nov 2025
  • David on High-resolution ‘fingerprint’ images reveal a weakening Atlantic Ocean circulation (AMOC)
  • Geoff Miell on Unforced variations: Nov 2025
  • Wpml etal on Site updates etc.
  • Wpml etal on Site updates etc.
  • Mr. Know It All on Unforced variations: Nov 2025
  • Piotr on Unforced variations: Nov 2025
  • Atomsk's Sanakan on Raising Climate Literacy
  • Piotr on Unforced variations: Nov 2025
  • Tomáš Kalisz on Unforced variations: Nov 2025
  • Atomsk's Sanakan on Unforced variations: Nov 2025
  • Yebo Kandu on Raising Climate Literacy
  • Nigelj on Unforced variations: Nov 2025
  • Atomsk's Sanakan on Unforced variations: Nov 2025
  • Piotr on Unforced variations: Nov 2025
  • Piotr on Unforced variations: Nov 2025
  • Piotr on Unforced variations: Nov 2025
  • David on Unforced variations: Nov 2025
  • David on High-resolution ‘fingerprint’ images reveal a weakening Atlantic Ocean circulation (AMOC)
  • Tomáš Kalisz on Unforced variations: Nov 2025

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,387 posts

15 pages

248,622 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.