Tropical tropospheric trends

Once more unto the breach, dear friends, once more!

Some old-timers will remember a series of ‘bombshell’ papers back in 2004 which were going to “knock the stuffing out” of the consensus position on climate change science (see here for example). Needless to say, nothing of the sort happened. The issue in two of those papers was whether satellite and radiosonde data were globally consistent with model simulations over the same time. Those papers claimed that they weren’t, but they did so based on a great deal of over-confidence in observational data accuracy (see here or here for how that turned out) and an insufficient appreciation of the statistics of trends over short time periods.

Well, the same authors (Douglass, Pearson and Singer, now joined by Christy) are back with a new (but necessarily more constrained) claim, but with the same over-confidence in observational accuracy and a similar lack of appreciation of short term statistics.

Previously, the claim was that satellites (in particular the MSU 2LT record produced by UAH) showed a global cooling that was not apparent in the surface temperatures or model runs. That disappeared with a longer record and some important corrections to the processing. Now the claim has been greatly restricted in scope and concerns only the tropics, and the rate of warming in the troposphere (rather than the fact of warming itself, which is now undisputed).

The basis of the issue is that models produce an enhanced warming in the tropical troposphere when there is warming at the surface. This is true enough. Whether the warming is from greenhouse gases, El Nino’s, or solar forcing, trends aloft are enhanced. For instance, the GISS model equilibrium runs with 2xCO2 or a 2% increase in solar forcing both show a maximum around 20N to 20S around 300mb (10 km):

The first thing to note about the two pictures is how similar they are. They both have the same enhancement in the tropics and similar amplification in the Arctic. They differ most clearly in the stratosphere (the part above 100mb) where CO2 causes cooling while solar causes warming. It’s important to note however, that these are long-term equilibrium results and therefore don’t tell you anything about the signal-to-noise ratio for any particular time period or with any particular forcings.

Page 1 of 3 | Next page