Responses to volcanoes in tree rings and models

Houston, we have a problem.

Admittedly, not a huge problem and not one that most people, or even most climatologists, are particularly fascinated by, but one which threads together many topics (climate models, tree rings, paleo-climate) which have been highlighted here in the past. The problem is that we have good evidence in the ice core records for very large tropical eruptions over the last 1000 years – in particular the eruptions in 1258/1259, 1452 and 1809 to 1815 – but for which many paleo-reconstructions barely show a blip in temperature. Models, in attempting to simulate this period, show varied but generally larger (and sometimes much larger) responses. The differences are significant enough to have prompted a few people to try and look into why this mismatch is occurring.

Whenever there is a mismatch between model and observation, there are, roughly speaking, at least three (non-exclusive) possibilities: the model is wrong, the observational data are wrong or the comparison is not like-with-like. There have been many examples of resolved mismatches in each category so all possibilities need to be looked at.

As described in a previous post earlier this year, Mann et al., 2012 (pdf), postulated that for extreme volcanoes, the cooling would be sufficient to saturate the growth response, and that some trees might `skip´ a ring for that year leading to a slight slippage in tree-ring dating, a potential smearing of the composite chronologies, and a further underestimate of the cooling in tree-ring based large-scale reconstructions.

This hypothesis has now been challenged by a group of authors in a comment (Anchukaitis et al.) (pdf, SI, code), who focus on the appropriateness of the tree ring growth model and the spatial pattern the volcanic climate responses. The Mann et al. response (pdf, SI) presents some further modeling and 19th century observational data in support of the original hypothesis.

Of course, there are still two other possibilities to consider. First, the models may have an excessive response. This could be due to either models responding excessively to the correct forcing, or could be related to an excessive forcing itself. There are indeed some important uncertainties in estimating the history of volcanic forcing – which involves inferring a stratospheric aerosol load (and effective radius of the particles and their distribution) from a network of sulphate peaks in ice cores in Greenland and Antarctica. For example, the forcing for the big eruption around 1453 differs by a factor of 2 in the inferred forcing (-12 W/m2 and -5.4 W/m2) in the two estimates proposed for the recent model-intercomparison (Schmidt et al., 2012). Note too that the details of how aerosols are implemented in any specific model can also make a difference to the forcing, and there are many (as yet untested) assumptions built into the forcing reconstructions.

Page 1 of 2 | Next page

References

  1. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures", Nature Geosci, vol. 5, pp. 202-205, 2012. http://dx.doi.org/10.1038/ngeo1394
  2. K.J. Anchukaitis, P. Breitenmoser, K.R. Briffa, A. Buchwal, U. Büntgen, E.R. Cook, R.D. D'Arrigo, J. Esper, M.N. Evans, D. Frank, H. Grudd, B.E. Gunnarson, M.K. Hughes, A.V. Kirdyanov, C. Körner, P.J. Krusic, B. Luckman, T.M. Melvin, M.W. Salzer, A.V. Shashkin, C. Timmreck, E.A. Vaganov, and R.J.S. Wilson, "Tree rings and volcanic cooling", Nature Geosci, vol. 5, pp. 836-837, 2012. http://dx.doi.org/10.1038/ngeo1645
  3. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Reply to 'Tree rings and volcanic cooling'", Nature Geosci, vol. 5, pp. 837-838, 2012. http://dx.doi.org/10.1038/ngeo1646
  4. G.A. Schmidt, J.H. Jungclaus, C.M. Ammann, E. Bard, P. Braconnot, T.J. Crowley, G. Delaygue, F. Joos, N.A. Krivova, R. Muscheler, B.L. Otto-Bliesner, J. Pongratz, D.T. Shindell, S.K. Solanki, F. Steinhilber, and L.E.A. Vieira, "Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1)", Geosci. Model Dev., vol. 5, pp. 185-191, 2012. http://dx.doi.org/10.5194/gmd-5-185-2012