[NDT : les passages en italique sont en français dans le texte original]
Les émissions de carbone en France s’élèvent à 1,64 tonne par personne, contre 2,67 tonnes au Royaume Uni et 5,61 tonnes aux Etats Unis. Si un pays peut se targuer d’être vertueux, et faire la leçon aux autres pays développés, vous pourriez penser que ce serait la France. Loin de là, sous l’impulsion de Nicolas Sarkozy, la France s’est lancée dans un programme ambitieux de réduction des émissions de carbone. En présentant ces mesures, M. Sarkozy a déclaré : « Premier principe : tous les grands projets publics, toutes les décisions publiques seront désormais arbitrées en intégrant leur coût pour le climat, leur ‘coût en carbone’. » Ces mesures comprennent : l’engagement que tous les bâtiments construits en 2020 soient des producteurs nets d’énergie, l’interdiction des ampoules à incandescence à partir de 2010, des aides pour les acheteurs de véhicules les moins polluants, les conducteurs de véhicules les plus polluants étant au contraire taxés, et la construction de routes sera limitée pour favoriser les transports ferroviaires avec la technologie de pointe française du TGV ! Une taxe carbone est également envisagée. Ces propositions sont le fruit d’une intense série de discussions entre scientifiques et représentants de la société civile, dont des représentants d’organisations non-gouvernementales écologistes, d’organisations patronales et de syndicats. Ce processus, connu sous le nom de Grenelle de l’Environnement, a été décrit brièvement dans Nature ici (accès avec souscription), et un résumé par la presse des propositions d’actions de Sarkozy est ici.
Cependant, il y a une certaine résistance de la part d’un tandem bruyant de deux membres très décorés de l’Académie des Sciences française, Claude Allègre étant le plus médiatisé et tapageur des deux. Au cours des dernières années, Vincent Courtillot est apparu comme le fidèle compère d’Allègre –le Dupont de Dupond–, l’aidant à diffuser ses thèses, et en ajoutant aussi des personnelles. Tous deux sont membres de l’Académie des Sciences, et Allègre a reçu à la fois le prix Crafoord et la médaille Bowie. Allègre a une liste impressionnante d’articles ayant sujet à la Terre interne, et fut de plus le Ministre de l’Education Nationale, de la Recherche et de la Technologie sous le gouvernement Jospin. Courtillot –actuellement directeur de l’Institut de Physique du Globe de Paris (IPGP)– a un passé reconnu en recherche fondamentale sur le géomagnétisme, et est actuellement le président de la Section de Géomagnétisme et Paléomagnétisme de l’American Geophysical Union. Leurs opinions ont été largement (certains diraient même plus que largement) exprimées lors d’un colloque sur le rapport du GIEC tenu au printemps dernier à l’Académie (voir le numéro spécial “Evolution des Climats” de la Lettre de l’Académie des Sciences, ainsi que les rapports du Figaro, du Monde et de Libération). Qu’est-ce-que tout cela signifie ? Est-ce que les opinions d’Allègre et Courtillot sont fondées sur une profonde clairvoyance qui aurait échappé à la communauté de scientifiques qui ont consacré leur carrière entière à étudier le climat ? Voyons cela.
Quand un scientifique actif aussi distingué qu’Allègre ou Courtillot s’exprime, sa parole capte notre attention, quelle que soit sa pertinence. Ce serait néanmoins une erreur d’accepter les affirmations de tels phares uniquement à cause de leur renommée; on doit contrôler les arguments sur leurs mérites. Allègre ne publie pas ses idées sur le climat dans la littérature scientifique, de sorte que nous devons nous contenter de ses écrits de vulgarisation et déclarations publiques afin d’avoir un aperçu de ces arguments. Un trésor de ces allègreries (allègritudes ?, allègrations ?) est facilement accessible dans un petit ouvrage humblement intitulé Ma vérité sur la planète (Plon/Fayard, Paris, 2007). Beaucoup de choses que l’on y trouve ne sont que rabâchage d’arguments standard de sceptiques, arguments complétement discrédités auxquels il n’apporte rien de neuf. Par exemple : il répète à plusieurs endroits l’erreur classique de confondre le caractère imprévisible de la météorologie avec la détermination de la réponse du climat au forçage radiatif : « J’ai peine à croire qu’on puisse prédire avec précision le temps qu’il fera dans un siècle alors qu’on ne peut pas prévoir celui qu’il fera dans une semaine » (p.89). Il répète également le raisonnement faux que les relations de phase entre CO2 et température mesurés dans les carottes de glace de l’Antarctique prouvent que c’est la température qui est responsable des variations de CO2 plutôt que l’inverse – un raisonnement éculé et largement discrédité (lire ici un résumé des contre-arguments). Il y a peu de choses à ajouter sur ces arguments, sauf que la capacité d’Allègre à les répéter indique soit une remaquable crédulité, soit un inquiétant manque d’intégrité scientifique.
Ailleurs, pourtant, Allègre excelle dans l’art de servir des balivernes comme arguments scientifiques. En voici quelques exemples.
- Allègre affirme que la disparition des glaciers du Kilimandjaro est due à un changement des apports de vapeur d’eau causé par le soulèvement tectonique, et n’a rien à voir avec le réchauffement global. Cette affirmation est apparue il y a un peu plus d’un an dans la chronique d’Allègre dans l’Express, et a été discutée dans un article précédent de RealClimate au sujet d’Allègre. Pour l’essentiel, Allègre passe à côté du fait que les événements tectoniques dontil est question dans l’article cité de Science ont modifié le climat africain il y a plusieurs millions d’années, alors même que le glacier actuel du kilimandjaro est apparu il y a seulement 10 000 ans. Cette affirmation erronée au sujet du Kilimandjaro est répétée dans Ma vérité sur la planète (p.120), bien qu’il ait eu suffisamment de temps et d’opportunités pour corriger cette erreur. Autant pour la ‘vérité‘ (la sienne ou une autre).
- Allègre soutient que le ‘bon sens’ permet de mettre en doute l’idée que le CO2 puisse autant contrôler le climat parce que sa concentration est seulement de 300 parties par million (p.104). Ce ‘bon sens’ bouscule plus d’un siècle de physique méticuleuse qui remonte à l’époque de Tyndall et qui montre précisément pourquoi certains gaz à l’état de trace influencent si fortement l’absorption des infra-rouges par l’atmosphère.
- Allègre dit qu’on ne « sait rien » (p.109) sur les événements de Dansgaard-Oeschger et autre type de variabilité millénaire existant dans les carottes de glace. De cette affirmation, je suppose que nous sommes censés déduire que, comme on ne « sait rien » sur ces événements, il se pourrait bien que le réchauffement actuel soit juste la dernière phase de l’un d’eux. Bien sûr, il y a encore beaucoup de choses à apprendre sur la variabilité millénaire, mais ce phénomène a fait l’objet de plusieurs centaines de publications scientifiques, douzaines de conférences, ainsi qu’une synthèse majeure par l’Académie des Sciences américaine. Nous en savons assez sur la structure de ces événements et leurs mécanismes pour tout écarter la possibilité que le réchauffement récent provienne simplement de ce type de variabilité naturelle. Nous en savons également assez pour nous inquiéter de la possibilité que le changement climatique dû à l’augmentation des gaz à effet de serre puisse déclencher un de ces changements majeurs de la circulation océanique qui ont participé à la variabilité millénaire dans le passé.
- Allègre annonce qu’avec une augmentation du CO2 il ne devrait pas y avoir de réchauffement à l’équateur, alors que le réchauffement prédit à l’équateur n’est que légèrement inférieur à la moyenne globale. Il affirme correctement que le réchauffement est plus fort aux pôles, mais aussi, et sans justification, qu’un réchauffement de 10ºC serait sans importance (p.122). C’est une affirmation plutôt surprenante puisqu’un réchauffement bien plus faible est déjà responsable d’une disparition notable de la glace de mer en Arctique. Cette conception erronée pourrait provenir en partie du fait qu’il pense que la température « aux pôles » varie entre « -30 et -60ºC » (p.122). Si c’était vrai, il n’y aurait pas d’eau libre en Arctique pendant le minimum de couverture de glace de mer. Il est facile de vérifier que ce n’est pas le cas, et en fait l’Arctique monte souvent jusqu’à 0ºC, et parfois au-delà.
- Ignorant les nombreuses études indépendantes des mesures sur le dernier siècle, il soutient que l’analyse de Phil Jones de ces données a été « fortement mise en doute » (p.100). Et par quel moyen ? Par une comparaison entre les données globales de Phil Jones et une analyse non publiée des moyennes d’un petit nombre de stations européennes – présentée comme l’archétype de l’expertise incomparable des Géophysiciens en analyse de séries temporelles ! Nous y reviendrons à propos de Courtillot.
- Très obligeamment, Allègre conseille aux modélisateurs : « Il faut donc éviter de fonder les prédictions du climat futur sur une moyenne mondiale dont la situation est floue. » (p.106). Visiblement il n’est pas au courant que, depuis au moins les années 70, les modèles de circulation générale simulent des champs spatialisés des prévisions de vent et de température, et que des cartes de ces changements ont été incluses dans tous les rapports du GIEC depuis le premier. Oh, mais j’oubliais. Ailleurs, Allègre assène que « personne ne lit » (p.115) les rapports du GIEC. Visiblement, cette déclaration s’applique au moins à une personne.
- Continuant d’étaler son ignorance de la modélisation, Allègre se demande pourquoi les modélisateurs ont inclus le CO2 dans leurs modèles, et en conclut que c’est uniquement parce qu’ils connaissent ses variations sur les derniers siècles. Est-ce-qu’un siècle de travail méticuleux en laboratoire et sur le terrain passé à documenter l’effet radiatif du CO2 aurait peut-être à voir avec l’attrait des modélisateurs pour ce gaz ? Visiblement pas dans l’univers d’Allègre. Mais il y a mieux : « Comme on ne sait pas bien comment se forment les nuages, on les néglige ! Comme on maîtrise mal le rôle des aérosols et des poussières, on les néglige ! » (p.104) C’est complètement faux. Nuages, aérosols et poussières (comme variations de l’irradiance solaire et éruptions volcaniques) sont tous pris en compte par les modèles actuels. Les modèles qui négligent l’influence de l’augmentation du CO2 n’arrivent pas à reproduire le réchauffement des derniers trente ans, et c’est précisément pour cette raison que le CO2 a été confirmé comme le responsable principal du réchauffement global.
- Allègre fait un certain nombre de déclarations fausses ou fallacieuses sur le contenu du Quatrième Rapport d’Evaluation du GIEC. Il assure, contrairement aux médias français, que ce rapport « est beaucoup plus modéré que les précédents. » (p.119) Ainsi, Allègre assure que « Pour un doublement des émissions de CO2 , la température du globe augmenterait de 2 à 4,5ºC en un siècle. Le précédent rapport disait entre 1,5 et 6ºC. » (p.119) En premier lieu, les déclarations du GIEC sur la sensibilité climatique font référence à un doublement de la concentration en CO2, pas de ses émissions, mais laissons à Allègre le bénéfice du doute et supposons qu’il ne s’agit que d’une autre coquille et pas d’une véritable incompréhension. Tout de même, Allègre mélange ici des pommes et des frites. Même si la fourchette de la sensibilité climatique a été réduite, passant de 1,5 – 4,5ºC à 2 – 4,5ºC, ce qui diminue ainsi la probabilité d’une faible sensibilité, la fourchette des prévisions pour l’année 2100 n’a presque pas changé (de plus la définition probabiliste de cette fourchette a varié entre les rapports, elles ne sont donc pas directement comparables). Dans la même veine, Allègre assure que le GIEC a réduit ses prévisions de hausse du niveau marin, ce qui n’est pas le cas (voir ici).
- Mais il y a mieux. Il dit que le GIEC « modère sans encore l’abandonner l’argument d’évolution de la température depuis le XIXe siècle. » (p.119) Ceci correspond évidemment à la croyance d’Allègre que l’un des principaux arguments du GIEC est que le CO2 doit être responsable de l’augmentation de température parce que (ben voilà !) tous deux augmentent ! Il est difficile au GIEC d’abandonner un argument qui n’a jamais été le sien, et en tout cas le Quatrième Rapport d’Evaluation fait probablement plus de place à la discussion des enregistrements de température sur le 20e siècle, en utilisant plus de techniques, qu’aucun des rapports précédents. Et pourtant (on pense ici à Galilée, parlant en serrant les dents tout en s’inclinant devant l’Inquisition) elle augmente bien (et en suivant pratiquement les prévisions). Poursuivant sur le thème du renoncement supposé du GIEC, Allègre assure que celui-ci a « abandonné » son argumentation basée sur les variations de CO2 et de température enregistrées par les glace. Rien de tout cela. Il n’y a pas eu de changement d’interprétation par le GIEC des courbes isotopiques et du CO2 de Vostok, interprétation qui apparait dans les deux rapports de 2001 et 2007 (avec, dans ce dernier, l’extension d’EPICA à des périodes plus anciennes). Cette discussion se trouve au chapitre 6 du Quatrième Rapport d’Evaluation (p.444, figure 6.3), mais comment pourrait-on s’attendre à ce qu’Allègre sache cela, puisque personne ne lit le rapport du GIEC, n’est-ce-pas ?
De telles idées fausses et déformations de la réalité comme celles exposées ci-dessus sont généreusement accompagnées de l’arsenal habituel d’insinuations et de citations abusives. Parce que Christopher Landsea (comparé de manière extravagante à Galilée !) a choisi de faire toute une scène de sa démission du GIEC, le processus dans son ensemble est jugé opposé à toute dissidence – ignorant de manière opportune que Lindzen lui est resté tranquillement tout au long du Troisième Rapport d’Evaluation du GIEC. Une affirmation de Dennis Hartmann, tout à fait justifiée et incontestable, sur les incertitudes de la modélisation est détournée afin d’insinuer que les modélisateurs ne croient pas possible d’obtenir suffisamment de précision pour tirer des conclusions sur le réchauffement futur (p.105). Des citations sur la possible nécessité de mesures d’adaptation, venant de Ron Prinn du MIT et de Wally Broecker de Columbia, sont utilisées afin d’insinuer que ces deux célébrités favorisent l’adaptation sur la réduction des émissions de CO2 (p.126). Et sur le sujet de l’adaptation par rapport à l’atténuation, certaines affirmations d’Allègre sont franchement saugrenues : il soutient que nous n’avons rien à craindre du réchauffement global. Après tout, nous nous sommes adaptés au trou d’ozone, n’est-ce pas ? Nous nous sommes adaptés aux pluies acides, n’est-ce pas ? (p.127) Et bien, non en fait, nous n’avons rien fait de tout cela. Nous nous sommes ‘adaptés’ au trou d’ozone en adoptant le protocole de Montréal pour contrôler les émissions de CFC. Nous nous sommes ‘adaptés’ aux pluies acides en adoptant des mesures de contrôle des rejets soufrés. Si c’est ça ‘s’adapter’, je pense que je peux juste dire : « D’accord ! ‘Adaptons’-nous au réchauffement global en réduisant les émissions de CO2 ! »
Que peut-on dire de toutes ces affirmations ? Je ne pourrais le faire mieux qu’Allègre lui-même : «…une imposture intellectuelle, une escroquerie ! » (p.107)
Quel que soit le plan d’Allègre dans ses annonces publiques, celles-ci semblent peu fondées sur son expertise scientifique. Avec sa litanie d’erreurs, d’idées fausses et de déformations de la réalité, il a renoncé à toute prétention d’être considéré sérieusement en tant que scientifique lorsqu’il parle du changement climatique. Et si même Lomborg et autres éco-polyannas bénéficient trop du soutien d’Allègre, notons que, au final, Allègre appelle quand même à une réduction de 20% des émissions de CO2 sur les vingt prochaines années. Nombre d’entre nous qui se refuseraient à toucher aux arguments d’Allègre, même avec un bâton de 3 m, seraient très heureux si un tel plan était mis en oeuvre aux Etats Unis, au moins comme un premier pas vers des réductions plus drastiques.
Voici donc pour Allègre. Maintenant que dire au sujet de M. Courtillot ? Heureusement il ne nous est pas nécessaire d’aller si loin dans les détails, car pratiquement tous les arguments présentés au débat à l’Académie (voir son article dans La Lettre de l’Académie des sciences) reflètent ceux du livre d’Allègre. Pourtant, notre homme parvient à ajouter quelques marques de son cru. Par exemple il déclare, sûr de lui, que les variations glaciaires-interglaciaires du CO2 sont « tout simplement » dues à l’effet de la température sur la solubilité du CO2. Il n’est donc pas au courant que ce mécanisme de base a été évalué il y a bien des années par Wally Broecker –comme Allègre, un détenteur du prix Crafoord– et a été estimé vraiment insuffisant (voir Martin, Archer et Lea, Paleoceanography 2005, pour un récent bilan sur ce sujet).
Vous vous souvenez du graphe de la température européenne dans Ma Vérité, qui devait remettre « fortement en doute » l’analyse de Phil Jones des enregistrements de température ? Et bien il réapparait avec Courtillot très enrichi par de nouveaux verbiages : les scientifiques du climat passent tout leur temps à modéliser et pratiquement pas à observer; les géophysiciens sont les seuls qualifiés à étudier les séries temporelles car ils le font sans arrêt et de toute façon ils ont pratiquement tout inventé en premier dans ce domaine; personne n’a jamais contrôlé ou vérifié le travail de Phil Jones. Et patati, et patata, rien de tout cela n’ayant une once de vérité. Mais, après avoir déclaré tout cela, les braves géophysiciens de l’IPGP décidèrent de regarder par eux-mêmes en moyennant quelques dizaines de stations météorologiques européennes (additionnées de quelques stations éloignées en Oural pour faire bonne mesure), et ben voilà, Courtillot est “étonné” que la courbe ne ressemble pas à ce qu’on leur avait appris ! (Courtillot est visiblement quelqu’un de facilement étonné, et autant surpris, car ces mots apparaissent avec une régularité stupéfiante dans son article).
Cette analyse, qui frappa Courtillot d’un vrai ‘coup de foudre‘, fut présentée lors du débat à l’Académie par Le Mouël (lui-même académicien, et détenteur de la médaille Fleming). Une vidéo de cette présentation se trouve ici. Cher lecteur, je vous presse de regarder cette vidéo afin de voir si vous pouvez en tirer plus de sens que je ne l’ai pu, parmi tous les graphes mal annotés, les choix étranges des comparaisons, et les informations qui manquent sur certains aspects cruciaux du traitement des données. J’ai fait de mon mieux pour présenter ce que je pense être l’essence de l’argumentation de Le Mouël, mais ce n’est pas facile. Sur la partie gauche de l’image ci-dessous j’ai reproduit le seul graphe dans lequel Le Mouël tente une comparaison directe entre ses données et l’analyse de Phil Jones parue dans le rapport du GIEC; ce graphe a été décalqué sur un des plans de la vidéo de la présentation. Le graphe est titré “Moyenne de l’Europe” dans la présentation, mais les données (courbe noire) que Le Mouël compare à l’analyse européenne de Phil Jones (trait rouge) sont en fait celles du Danemark. De plus, les données de Le Mouël semblent correspondre à des minima mensuels (ou journaliers peut-être). Pourquoi voudrait-on comparer les minima de température au Danemark avec la moyenne de température de toute l’Europe, cela me dépasse, mais finalement ce dont Le Mouël fait grand bruit c’est l’affirmation que la courbe jaune est une meilleure approximation des données que la courbe de Phil Jones. En considérant la variabilité, il n’y a vraiment pas de raison objective de préférer l’une à l’autre, la distinction entre les deux approximations est complètement irréelle. Le message de l’analyse de Le Mouël est qu’en Europe une augmentation marquée de la température n’apparaît pas avant les années 80. Déjà entendu quelque part ? Vous devriez, car ceci correspond plus ou moins à ce que dit le GIEC, qui conclut de plus que la variabilité naturelle ne peut expliquer le réchauffement récent. Ceci est bien visible sur le graphe de droite tiré du Quatrième Rapport d’Evaluation du GIEC. La zone ombrée en bleu correspond à un ensemble de simulations forcées par la variabilité naturelle, tandis que celle en rose inclut aussi le forçage anthropique. Seule cette dernière reproduit l’augmentation de la fin de l’enregistrement. Bien loin de bousculer les conventions, Le Mouël a en fait montré qu’une simple moyenne d’un jeu limité de données confirme largement l’analyse de Phil Jones – une ‘prouesse’, si l’on réalise qu’en considérant une région aussi petite que l’Europe, la tendance anthropogénique est bien plus difficile à distinguer de la variabilité naturelle due à la circulation.
Le but de tout ce trafic avec les courbes de température est que le soleil doit en être pour quelque chose dans ces fluctuations. Ce qui nous amène au forçage radiatif, où Courtillot et consorts ont eu quelques problèmes sur ce point, car il leur a été très difficile de faire passer le CO2 pour un forçage mineur et la variabilité solaire pour un forçage majeur. Un essai baclé dans ce sens a été de prétendre que les variations des nuages surpassaient le CO2 : Courtillot prétend que les nuages sont responsables d’un forçage radiatif de 80 watts par mètre carré, de sorte qu’un changement aussi faible que 3% de la couverture nuageuse induirait un forçage radiatif de 2,4 watts par mètre carré, comparable à celui actuel des gaz à effet de serre. Mais pour obtenir ce chiffre, Courtillot a évidemment supposé que l’albédo terrestre est entièrement dû aux nuages, et de plus il a négligé l’effet de serre des nuages. Calculé correctement, le forçage radiatif net des nuages est plutôt de 20 watts par mètre carré, de sorte qu’une variation de 3% donne seulement 0,6 watts par mètre carré, très inférieur au forçage radiatif actuel des gaz à effet de serre, sans même parler de celui qui nous attend.
Cette gaffe n’est rien en comparaison de la difficulté éprouvée pendant les débats par Le Mouël, qui collabore avec Courtillot, lorsqu’il essaya de montrer que la variation de 1 watt par mètre carré de l’irradiance solaire au cours d’un cycle solaire représente vraiment la moitié du forçage des gaz à effet de serre. Bon, il y a un détail que Le Mouël oublie de prendre en compte, c’est la sphéricité de la Terre (ce qui implique de diviser l’irradiance solaire par 4) ou sa réflectance (ce qui implique de prendre 70% du résultat). Comme le reporter du Monde le soulignait malicieusement, le calcul de Le Mouël suppose une Terre noire et plate, mais “Hélas! La Terre est ronde” (zut alors !). Le Mouël semble ainsi suivre avec ferveur Allègre dans ses mauvais pas en géométrie : dans un livre de 1988 (12 clés pour la géologie, Belin/Paris), Allègre affirme sûr de lui que le gradient de température entre les pôles et l’équateur est dû à l’albédo de la neige et à l’absorption de l’atmosphère, ne faisant aucune mention du rôle de la géométrie sphérique de la Terre, qui est de loin le facteur dominant (et la raison de la présence aux pôles de glace avec un albédo élevé). Messieurs, voici un indice : que veut dire le ‘G’ de ‘IPGP’ ?
La rotondité de la Terre l’ayant privé de son 1 watt par mètre carré –qui de toute façon est pratiquement moyenné au cours d’un cycle solaire et ne laisse qu’un dixième de watt par mètre carré entre les cycles– Courtillot se raccrocha à la possibilité d’un mécanisme non linéaire, inconnu et non quantifié, pour transformer la variabilité solaire haute fréquence en une tendance sur un siècle.
Il y a également quelques bavardages sur la position de Moberg sur la ‘crosse de hockey’, la prétendue période très chaude de l’Optimum Médiéval, et une supposée variabilité solaire millénaire qui devrait expliquer pourquoi le réchauffement récent correspond plus ou moins à l’explication de Moberg de l’Optimum Médiéval. Mises à part quelques indications que la méthode utilisée par Moberg surestime la variabilité (voir Mann, Rutherford, Wahl et Ammann 2005, disponible ici), le mantra du “C’est la faute au soleil” s’effondre puisque ni le soleil ni les rayons cosmiques ne montrent de tendance pouvant expliquer le réchauffement des dernières décennies, comme nous en avons discuté à plusieurs reprises sur RealClimate (le plus récemment ici).
Pour ce qui est du climat, les faits de gloire de Courtillot ne se trouvent pas dans son article de La Lettre de l’Académie. Pour cela nous devons nous tourner vers un article récemment publié dans EPSL, article qui prétend que les changements climatiques sont étroitement liés au champ géomagnétique. Ce travail est-il convaincant ? Ce sera le sujet de la seconde partie.
We need more nuclear power plants world wide! Vive la France! We don’t have to worry about the steam emitted, right?
Jim, here’s the flaw in the chain of logic:
> the lower the maximum sunspot number the cooler the earth
That assumes that the Earth’s temperature varies along with the sunspot number. This hasn’t been true for decades.
http://mustelid.blogspot.com/2005/03/solar-errors.html
https://www.realclimate.org/index.php/archives/2005/07/the-lure-of-solar-forcing/
https://www.realclimate.org/index.php/archives/2006/03/solar-variability-statistics-vs-physics-2nd-round/
Suport Al GORE in this poll
http://www.elpais.com/comunes/2007/resumen/personajes.html
RE #246 & 249, I’ve mentioned several times here that the solar increase is a serious consideration, esp in conjunction with the warming we are causing. It would require us to reduce our GHGs all the more, so as to not only reduce the warming we’re causing, but also the extra warming the sun is causing.
Luckily the scientists here have assured me that such increase in solar warming is not expected for a long, long time.
Still I think it best to reduce our GHGs ASAP AMAP (as much as possible), because you never know when other forcings, like volcanic emissions, or feedbacks (like GHGs released by nature due to the warming) might surge up greatly.
Sarkozy is doing very well. And now Australians have taken a giant step in the right direction by electing a person who says he’ll ratify Kyoto ASAP. See: http://www.climateark.org/shared/reader/welcome.aspx?linkid=88417
Now the U.S. will be all alone as a Kyoto spoiler.
Have a quick question about the greenhouse effect if anyone can help. Im just confused about some simple part of it. I can sum it up as one question – is there backradiation from nitrogen and oxygen molecules? My confusion is because I think they must radiate energy in some form, and some must go down and be absorbed by the surface. But wouldn’t that mean non-greenhouse gases were contributing to the greenhouse effect?
Re 250: For reasons abundantly discussed on this site, the steam is not nearly as much of a problem as the warm water effluents.
RE #248 “the problem is: Cap and Trade doesn’t actually REDUCE CO2 production. It shifts it and masks it.”
Depends entirely where you set, and whether you enforce, the cap. What I’m supporting is actually the “Contraction and Convergence” approach (http://www.gci.org.uk/contconv/cc.html).
#250 “We don’t have to worry about the steam emitted, right?”
Right.
All that steam is safely in the ocean now (with a little bit of tritium in it, so if you still want to worry, there’s your chance), except last week’s, which is raining out as we speak ;-)
Dave posts:
[[the problem is: Cap and Trade doesn’t actually REDUCE CO2 production. It shifts it and masks it.]]
It reduces it if you reduce the cap every year. That’s how we got acid rain decreased in the United States; by a cap-and-trade program on sulfur emission.
Ref 251 Hank writes “That assumes that the Earth’s temperature varies along with the sunspot number. This hasn’t been true for decades.” I am lost. It does NOT assume “that the earth’s temperature varies with sunspot number.” It assumes that the earth’s temperature varies with the MAXIMUM sunspot number during each sunspot cycle. Each sunspot cycle lasts about 11 years, which is about one decade. During the 20th century, there have been about 9 solar cycles. Each of these cycles has had a maximum sunspot number above average for the time since sunspot numbers have been measured. The earth’s temperature has sort of risen during the 20th century. I think people are confusing sunspot number, which varies in a sort of regular way over each 11 year cycle, and maximum sunspot number during the cycle. There have only been 9 such numbers for the whole of the 20th century.
The french have always been ahead of the race in terms of the environment, they championed the adoption of nuclear power as their main source of energy, they built a highly efficient transport system and their latest proposals are yet again examples of their forward thinking and awareness of issuses most americans brits and australians are soo painfully slow at grasping and/or accepting. See they chose to accept what the scientists were saying well before the rest of us and rather than hope that the problem will go away they chose to tackle the problem head on. Actually France and Germany are champions in this regard. The Germans pay net energy producers a dividend whether they are a a nuclear power plant or a suburban house with solar cells on it’s roof. Now with solar cells becomming more and more efficient and no doubt subsidised heavily by the gov france can indeed afford to become a role model for all other countries to follow. In regard to incandescent lighting I have written to the management of our largest chain of supermarkets to phase out the sale of incandescents..response…”when the gov subsidises Compact fluoro lights to the point that they are a comparable price to incandescents”..Great leadership??
Re Lynn Vincentnathan @ 254: “Now the U.S. will be all alone as a Kyoto spoiler.”
Not quite. Unfortunately Canada’s conservative government, also a minority, btw, is still advocating only voluntary carbon “intensity” reductions, and just this week managed to prevent the Commonwealth nations from adopting binding mandatory cuts.
Jim, you’re saying that with a low maximum sunspot number the Earth cools.
I’m pointing out that the change is heat from the Sun between peak and minimum is so slight — compared to the trend now — that it makes only a slight reduction in warming, not cooling.
It’s a factor. It’s a very minor factor compared to the current rapid increase in greenhouse gases, and the warming already built in by those that will go on for some centuries til a new equilibrium is reached. Then only very slowly CO2 will get removed by natural processes, once we quit overwhelming them by adding it so very fast.
Yes the Sun makes a difference. No, not a very big one compared to human activity this century.
Re #255: apparently not… searching for the thermal infrared spectrum of N2 and O2 came up empty-handed. Even listings of IR spectra of atmospheric constituents don’t include them.
I have heard that symmetric diatomic molecules of this kind don’t have the kind of band spectra that the greenhouse gases have. Being transparent to IR means according to Kirchoff-Bunsen also that they do not radiate in the IR.
I remember from my glass-blowing course that glass, which is transparent to visible light, doesn’t glow in visible light either when heated up in the gas burner. A painful demonstration of Kirchoff-Bunsen if you’re not careful :-(
Comment by bobn ” I can sum it up as one question – is there backradiation from nitrogen and oxygen molecules? My confusion is because I think they must radiate energy in some form, and some must go down and be absorbed by the surface. ”
N2 & O2 don’t radiate energy.
Ref 263. Hank, I agree with you that “I’m pointing out that the change is heat from the Sun between peak and minimum is so slight — compared to the trend now — that it makes only a slight reduction in warming, not cooling.” However, the reason the earth is going to cool, as I have stated before, is because of changes in the sun’s magnetic and electrical properties, and has nothing to do with heat. Precisely how the changes in the sun’s magnetic and electrical effects causes the earth to cool down or heat up, we do not understand. But the correlation is such, that I for one, believe it will happen.
bobn posts:
[[Have a quick question about the greenhouse effect if anyone can help. Im just confused about some simple part of it. I can sum it up as one question – is there backradiation from nitrogen and oxygen molecules? My confusion is because I think they must radiate energy in some form, and some must go down and be absorbed by the surface. But wouldn’t that mean non-greenhouse gases were contributing to the greenhouse effect?]]
Nitrogen and oxygen are very poor absorbers of infrared radiation, and therefore very poor emitters of IR. Most of the back radiation from the sky is from greenhouse gases.
Jim Cripwell writes:
[[ However, the reason the earth is going to cool, as I have stated before, is because of changes in the sun’s magnetic and electrical properties, and has nothing to do with heat. Precisely how the changes in the sun’s magnetic and electrical effects causes the earth to cool down or heat up, we do not understand. But the correlation is such, that I for one, believe it will happen.]]
WHAT “correlation?” The biggest solar-Earth temperature correlation matches total solar irradiance, not something magnetic or electric. If you throw out TSI because it doesn’t match the recent rapid warming, you have to focus on things that match Earth’s temperature history even less. Sorry, you’re just not going to convince anybody that way.
To echo Paulina in 203, I would also like to thank the people who contribute to this site. You are doing the world a great service, and as someone who has read the comments for some time, your patience with, ahem, people who do not do their homework is extremely admirable.
Phil Felton (#265) wrote:
I hope you don’t mind if I give you the long answer rather than the short one. In all honesty I think your question requires it as I believe there are other questions behind it. But before getting into this, I should let you know that I am not an expert — just a computer programmer working in a completely different field. What follows is simply what I have learned while participating here. And I must admit that I am essentially going off memory, and sometimes my memory doesn’t serve me quite as well as I might like.
*
What is the difference between line radiation and blackbody radiation?
The absorption spectra of gasses are the same as their emission spectra. Or at least that is a good approximation. Essentially, what you are dealing with at that point is the fact that a good absorber is also a good emitter — for each wavelength. We refer to this as Kirchoff’s law. This applies to gasses, liquids and solids.
In fact, the blackbody emission spectra is only an idealized case. Something which cannot exist in reality, although some substances are better at it than others. In all cases, you have bands, lines, band widths, line widths. Higher pressures will cause the bands to become wider, higher temperatures will cause the lines to widen, but the bands to become more narrow. And the lines and bands themselves are where the substance emits as the result of the decay of excited states.
Water vapor isn’t linear, so you will have an electric dipole. As a result, you will have vibrational excitation and rotational excitation as well as states involving both vibrational and rotational excitation — refered to as rovibrational states. Carbon dioxide is however linear and symmetric. As such it has vibrational states, but no pure rotational states. However, as the result of assymmetric vibrations it can have rovibrational states.
For each state, in the spectra you will see a series of lines representing the different points in the spectra where absorption and emission can occur. Some look like symmetric dampened oscillating curves if you look real close.
However, the more interactions there are between the different molecules, the more the number of excited states which become available, and as such the spectra will come closer to the kind of continuous spectra than we normally associate with liquids and solids. But even in the case of solids you are actually dealing with spectra which ultimately are composed of lines and bands — if you look closely enough.
With some solids you don’t have to look quite so closely. Dusts and crystals come to mind — as do various alloys. And typically, even with liquids and solids, the spectral emissivity (which is essentially a measure of how well the substance absorbs or emits at a given wavelength) will vary over the spectrum. We recognize this by says that there are no true black bodies, but there are also no true grey bodies — where the spectral emissivity would be constant over the entire spectrum.
As such, I prefer to avoid speaking of line radiation and blackbody radiation. It is all realistic body radiation.
*
But typically I will avoid even the phrase “realistic body radiation.” After all, gasses aren’t normally thought of as bodies, are they? Instead I will generally use the term “thermal radiation.”
It is, afterall, thermal energy which is being gained when the substances absorb and thermal energy which is being lost when they emit. And above roughly 10 mb for gasses, the temperature at which the substance emits will be the same as the temperature of the substance itself. At each point in the spectra where absorption and emission takes place, there will be a brightness temperature which is the same as the Maxwell collisional-temperature of the substance itself.
But why will the temperature of the spectra be the same as the collisional temperature?
Each excited state is subject to quantum decay. This is a form of exponential decay over time such that an excited molecule has no memory of how long it has been excited, and for each unit of time that it survives, the probability that it will survive the next unit of time will be the same as all of the units before it.
However, above 10 mb, there will tend to be a great many collisions, more than a million collisions taking place in the time that it would take the molecule’s excited state to decay — at least within the near infrared spectrum for temperatures found on earth. As such, the molecule which absorbs a photon will typically lose its energy to the surrounding gas.
To a first approximation at least, the major constituents of our atmosphere (nitrogen and oxygen) will not emit. They are symmetric diatomic molecules, and as such any vibration which might exist will not be quantized any more than the translational energy that exists when molecules travel in a straight line is.
However, they will collide with greenhouse gas molecules. Energy will be lost and gained during such collisions. And as such, all of the molecules which constitute the atmosphere will be at the same temperature.
But this temperature will also extend to the excited states of the greenhouse gas molecules themselves. A certain percentage will be in an excited state at any given time — even when the energy associated with that excited state is considerably greater than the average kinetic energy of the molecules. Afterall, the Maxwell distribution of kinetic energy has a very long tail.
As long as a certain percentage of greenhouse gas molecules are in an excited state at any given time, over a given unit of time, there will be a certain percentage that will undergo spontaneous decay. As such, we will say that the vibrational temperatures, rotational temperatures, and rovibrational temperatures of any given greenhouse gas will be the same as the translational temperature of the gas itself.
However, these do tend to diverge below 10 mb — as there aren’t enough collisions to equalize the different temperatures. Above 10 mb, you will have a local thermodynamic equilibria where the temperature of the radiation field is the same as the temperature of the substance which is emitting thermal radiation, but below 10 mb, the temperature will begin to fragment into different temperatures for different states, resulting first in a partial-LTE, then a non-local thermodynamic equilibrium as the temperatures associated with different states all begin to diverge.
*
But is it actually the case that oxygen and nitrogen do not emit? Well, oxygen is an interesting exception. It will emit very weakly as the result of a small magnetic dipole. But both will emit very weakly as the result of multiple collisions resulting in excited states. Now how exactly that works I do not know. But it is something which Hank Roberts brought up at one point.
Incidentally, my apologies for not including the references for the above material. There are simply too many points. But if you have a few specific points that you are really interested in, I or others can probably find the literature readily enough.
Re response to 176. Writing an updated Candide…now that’s something I could perhaps look at when I retire…
#243 Lawrence Coleman concerning losing the carbon sink of the oceans:
Please see Nov 1, posting Losing the carbon Sink and comments:
https://www.realclimate.org/index.php/archives/2007/11/is-the-ocean-carbon-sink-sinking/
Ref 268 Barton writes “WHAT “correlation?”. I am not sure why I bother. The coincidence of the Maunder minimum with the Little Ice Age.
Re 266. Jim Cripwell, OK, now let me get this straight. You admit you have no model–hell, not even a glimmer of an idea that could one day become a model. You don’t even know if it is “electrical” or “magnetic”. In effect, you want to explain the unknown in terms of the unknown. But you want us to scrap a perfectly good theory that explains the data in terms of well understood physical processes known to be occurring. Uh, Jim, ever hear of science?
bobn, re:255. People seem to get wrapped around the axle when it comes to “blackbody radaition” versus quantum radiation. A blackbody radiation distribution is just the energy distribution a gas of photons in equilibrium would have at a given temperature. It’s a property of the spin-1 particles we call photons. However, photons don’t interact with each other very much, so how do they come to equilibrium? They do so by interacting with matter. If the matter were a perfect black body, it would absorb perfectly at all wavelengths. Know such a material? Neither does anybody else. Real materials can only absorb photons where they have energy transitions that correspond to the photon wavelength. So, to first order, O2 and N2 do not radiate or absorb in the IR (no transitions corresponding to that energy difference). In reality, as molecules interact, the bonds get stretched, bent, bruised and otherwise tortured, and you get nonzero magnetic moments so you may get some weak absorption/emission at high densities.
To understand blackbody radiation, I recommend the treatment in Landau and Lifshitz “Statistical Mechanics” book–it’s pretty clear. To understand the role of ghgs in climate, I recommend Ray Pierrehumbert’s book. Hope this helps.
Ray Ladbury (#275) wrote:
Thank you, Ray.
That was the bit I was missing. Didn’t know that it was the same explanation as what I gave in terms of O2 for N2, but it makes sense. Meanwhile, I will have to get the Statistical Mechanics when I’m a little more sure about the finances. Already have Raypierre’s book, though.
Ray Ladbury (#274) wrote:
Presumably Frank James got himself a PhD in physics, but obviously it didn’t help.
Ref 274. Ray writes “But you want us to scrap a perfectly good theory that explains the data in terms of well understood physical processes known to be occurring.” Correction. All you have is a hypothesis. You cannot possibly call it a theory. There is absolutely not one single scrap of hard measured independently replicated experimental data that connects the recent rise in the concentration of CO2 in the atmosphere, with an alleged recent rise in the earth’s temperature, or anything else for that matter. I suggest you read “The Chilling Stars”. I dont want you to scrap you ideas. But I do wish you would stop pressuring our politicians to waste billions of dollars in an unnecessary attempt to reduce the emission of CO2.
Re 216:
http://isccp.giss.nasa.gov/climanal1.html is interesting. Looking at the cloud cover graph, the cloud amount rose up to 1987, then fell by 4% to 2001. That’s a lot of forcing. It then recovered slightly.
quote For clouds, I assume mean cloud coverage of 61.7% (Kiehl and Trenberth’s 1997 figure). If the average albedo of the surface is 0.05, then clouds must have a mean albedo of 0.465 to reproduce the observed planetary albedo. If we then decrease cloud cover by 1%, RF changes by 0.96 W m-2. unquote
So for 14 years we had up to an extra 4 watts/m^2. Comparing the graph with Hadcrut3 looks promising.
quote The work of Palle et al. with Earthshine estimates of Earth’s albedo is very interesting, but not everybody buys his figures yet, much less the big annual changes. There may be some problems with his methodology. unquote
Would you care to expand on the doubts?
JF
Re “an alleged recent rise in the earth’s temperature” in 278: Jim, this is an odd qualification, given that you’ve admitted the existence of a warming trend in other posts. Why is it suddenly “alleged” in this one?
Jim Cripwell writes, bizarrely:
[[Ref 268 Barton writes “WHAT “correlation?”. I am not sure why I bother. The coincidence of the Maunder minimum with the Little Ice Age.]]
The Maunder Minimum was in TSI, Jim. TSI in the mid 1600s was around 1363 watts per square meter compared to the present 1366. TSI and sunspots tend to go together. Again, there’s no mysterious electric or magnetic force involved that correlates with climate history. It’s a simple matter of more or less sunlight.
Jim Cripwell writes, even more bizarrely:
[[There is absolutely not one single scrap of hard measured independently replicated experimental data that connects the recent rise in the concentration of CO2 in the atmosphere, with an alleged recent rise in the earth’s temperature, or anything else for that matter.]]
What part of “the basic lab work was done in 1859” do you not understand? Or do you think the CO2 measurements from Mauna Loa are faked? I’m at a loss to understand your repeated statement that there’s no evidence. Are you just unaware of the evidence?
Uh, oh:
http://www.pnas.org/cgi/content/short/104/47/18866
Re Jim Cripwell @ 273: “I am not sure why I bother.”
That makes at least two of us, probably a whole lot more.
“I suggest you read “The Chilling Stars.”
And you have the chutzpah to write “All you have is a hypothesis. You cannot possibly call it a theory”?
From Hank Roberts (283) link:
All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing.
L’objection d’Allègre sur la domination écrasante de l’eau (par rapport au CO2) peut-elle être balayée au seul nom de “plus d’un siècle de physique méticuleuse qui remonte à l’époque de Tyndall”? Si j’en crois Weart(http://www.aip.org/history/climate/co2.htm#N_10_) la majorité des météorologistes pensaient encore en 1950 que le CO2 était trop dilué pour jouer un rôle. Quant aux physiciens, quand ils avaient une opinion, c’était souvent la même (depuis Angström en 1900). Si je comprends bien, il y a essentiellement 3 raisons qui expliquent l’importance du CO2: 1) il y a amplification par la vapeur d’eau (par un facteur entre 1 et 5). 2) les bandes d’absorption de H20 et CO2 ne se recouvrent pas tout à fait. 3) Au dessus de 7000m environ, il y a plus de CO2 que de H20, et à plus basse altitude la chaleur se propage surtout par convection. Y a-t-il des analyses plus précises ou faut-il se résigner à croire les ordinateurs (ce que je fais volontiers, mais il est agréable de comprendre)?
[Response: Voir aussi A Saturated Gassy Argument,What Angstrom didn’t know et Water Vapor: Feedback or Forcing? –raypierre]
Jim isn’t reading, but for others, see the links posted earlier.
Quoting from the first of the three, from William Connolley’s blog:
——excerpt——
2005-03-31 Solar errors.
For those of you interested in solar-climate connections, I strongly recommend reading DamonLaut2004.pdf from which one may quote gems such as: Analysis of a number of published graphs that have played a major role in these debates and that have been claimed to support solar hypotheses [Laut, 2003; Damon and Peristykh, 1999, 2004] shows that the apparent strong correlations displayed on these graphs have been obtained by incorrect handling of the physical data. The graphs are still widely referred to in the literature,and their misleading character has not yet been generally recognized. Readers are cautioned against drawing any conclusions, based upon these graphs ”
——end excerpt—–
re 276. Hi ray.
Look at the sheep.
https://esg.llnl.gov:8443/about/errata.do
For those of you who continue to try to refute the mindless statements of Jim Cripwell, you need to understand that he is following the well-established principle that “a lie repeated often enough becomes the truth.” (courtesy of Joseph Goebbels) That is why he keeps repeating nonsense that has been refuted multiple times in these threads. I really object to allowing him to continue to clutter up the discussions. If he has something new to offer, then fine.
#287 Jacques
De toute façon, il y a “domination” (terme impropre) du H2O sur le CO2 puisqu’une bonne part du réchauffement attendu provient de la rétroaction H2O, pas du CO2 lui-même. (Y compris “au-dessus de 7000m”, car la rétroaction de la vapeur d’eau est surtout sensible en haute troposphère et sur les Tropiques, du moins dans les modèles, voir ici la discussion récente du Douglass 2007). Sinon, je pense qu’il faut passer par des modèles (ordinateurs) pour calculer tout cela au-delà de la physique de base – cette dernière nous dit simplement que le CO2 absorbe et émet dans l’IR lointain, comme d’autres espèces H2O, CH4, etc.