• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Climate Science / Linking the climate-ecology attribution chain

Linking the climate-ecology attribution chain

19 Feb 2009 by Jim

Guest commentary by Jim Bouldin, Department of Plant Sciences, UC Davis

Linking the regional climate-ecology attribution chain in the western United States

Many are obviously curious about whether certain current regional environmental changes are traceable to global climate change. There are a number of large-scale changes that clearly qualify—rapid warming of the arctic/sub-arctic regions for example, and earlier spring onset in the northern hemisphere and the associated phenological changes in plants and animals. But as one moves to smaller scales of space or time, global-to-local connections become more difficult to establish. This is due to the combined effect of the resolutions of climate models, the intrinsic variability of the system and the empirical climatic, environmental, or ecological data—the signal to noise ratio of possible causes and observed effects. Thus recent work by ecologists, climate scientists, and hydrologists in the western United States relating global climate change, regional climate change, and regional ecological change is of great significance. Together, their results show an increasing ability to link the chain at smaller and presumably more viscerally meaningful and politically tractable scales.

For instance, a couple of weeks ago, a paper in Science by Phil van Mantgem of the USGS, and others, showed that over the last few decades, background levels of tree mortality have been increasing in undisturbed old-growth forests in the western United States, without the accompanying increase in tree “recruitment” (new trees) that would balance the ledger over time. Background mortality is the regular ongoing process of tree death, un-related to the more visible, catastrophic mortality caused by such events as fires, insect attacks, and windstorms, and typically is less than 1% per year. It is that portion of tree death due to the direct and indirect effects of tree competition, climate (often manifest as water stress), and old age. Because many things can affect background mortality, van Mantgem et. al. were very careful to minimize the potential for other possible explanatory variables via their selection of study sites, while still maintaining a relatively long record over a wide geographic area. These other possible causes include, especially, increases in crowding (density; a notorious confounding factor arising from previous disturbances and/or fire suppression), and edge effects (trees close to an
opening experience a generally warmer and drier micro-climate than those in the forest interior).

They found that in each of three regions, the Pacific Northwest, California, and the Interior West, mortality rates have doubled in 17 to 29 years (depending on location), and have been doing so across all dominant species, all size classes, and all elevations. The authors show with downscaled climate information that the increasing mortality rates likely corresponds to summer soil moisture stress increases over that time that are driven by increases in temperature with little or no change in precipitation in these regions. Fortunately, natural background mortality rates in western forests are typically less than 0.5% per year, so rate doublings over ~20-30 years, by themselves, will not have large immediate impacts. What the longer term changes will be is an open question however, depending on future climate and tree recruitment/mortality rates. Nevertheless, the authors have shown clearly that mortality rates have been increasing over the last ~30 years. Thus the $64,000 question: are these changes attributable in part or all to human-induced global warming?

Yes, argues a pair of December papers in the Journal of Climate, and a 2008 work in Science. The studies, by Bonfils et. al. (2008), Pierce et. al. (2008), and Barnett et. al. (2008), link observed western temperature and temperature-induced snowmelt processes to human-forced (greenhouse gases, ozone, and aerosols) global climate changes. The authors used various combinations of three GCMs, two statistical downscaling techniques (to account for micro-climate effects that aren’t resolved in the GCMs), and a high resolution hydrology model to experiment with the various possible causes of the observed climatic changes and the robustness of the methods. The possible causes included the usual list of suspects: natural climatic variability, the human-induced forcings just mentioned, and non-human forcings (solar and volcanic). Climate models were chosen specifically for their ability to account for important, natural climatic fluctuations in the western US that influence temperature, precipitation and snowpack dynamics, particularly the Pacific Decadal Oscillation, and El Niño/La Niña oscillations, and/or their ability to generate the daily climatic values necessary for input to the hydrologic model. The relevant climate variables included various subsets of minimum and maximum daily temperatures from January to March (JFM), their corresponding monthly averages, degree days (days with mean T>0ºC), and the ratio of Snow Water Equivalent (SWE) to water year precipitation (P). In each case, multiple hundred year control runs were generated with two GCMs to isolate the natural variability, and then forced runs from previous model intercomparison projects were used to identify the impacts of the various forcings.

The results? The authors estimate that about 50% of the April 1 SWE equivalent, and 60% of river discharge date advances and January-to-March temperature increases, cannot be accounted for by either natural variability or non-human forcings. Bonfils et al also note that the decreases in SWE are due to January-to-March temperature increases, not winter precipitation decreases, as the observational record over the last several decades shows. The April snow is a key variable, for along with spring through early fall temperatures, it has a great bearing on growing season soil moisture status throughout the western United States, and thus directly on forest productivity and demographic processes.

Link o’ chain, meet link o’chain.

Update: The new USA National Phenology Network is described here.

Filed Under: Climate Science

Reader Interactions

254 Responses to "Linking the climate-ecology attribution chain"

Comments pagination

« Previous 1 … 4 5 6
  1. Mark says

    19 Mar 2009 at 4:04 AM

    re 248, not in the movie. Though the units weren’t in ppm.

    PS Aren’t humans plant food? After all, we get buried and we’re “pushing up daisies” aren’t we? So we should be making MORE humans to help increase the amount of plant food available, yes?

  2. Jim Bouldin says

    19 Mar 2009 at 7:53 PM

    Relative to some of the concerns raised by Aaron Lewis earlier in this thread:

    Lobella et al, 2006:
    Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties

    Full article available at: https://e-reports-ext.llnl.gov/pdf/329204.pdf

    Abstract

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. In regions where perennial crops are economically and culturally important, improved assessments of yield responses to future climate are needed to prioritize adaptation strategies. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO2 fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions were identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards (not, vert, similar30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

    Keywords: Climate change; Perennial agriculture; Almonds; Grapes; California

  3. Jim Bouldin says

    19 Mar 2009 at 7:56 PM

    BTW I really enjoyed the lecture by Dickson in the link you provided Hank (250). The guy has a nice style.

  4. Hank Roberts says

    19 Mar 2009 at 8:31 PM

    Thingsbreak posts much worth reading, glad to see you over there too.

« Older Comments

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Unforced variations: Jun 2025
  • Predicted Arctic sea ice trends over time
  • The most recent climate status
  • Unforced variations: May 2025
  • Unforced Variations: Apr 2025
  • WMO: Update on 2023/4 Anomalies

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • David on Unforced variations: Jun 2025
  • nigelj on Unforced variations: Jun 2025
  • Barry E Finch on Unforced variations: Jun 2025
  • Barry E Finch on Unforced variations: Jun 2025
  • Atomsk's Sanakan on Unforced variations: Jun 2025
  • Pedro Prieto on Predicted Arctic sea ice trends over time
  • Tomáš Kalisz on Unforced variations: Jun 2025
  • Secular Animist on Unforced variations: Jun 2025
  • Susan Anderson on Predicted Arctic sea ice trends over time
  • Barton Paul Levenson on Unforced variations: Jun 2025
  • Barton Paul Levenson on Predicted Arctic sea ice trends over time
  • zebra on Predicted Arctic sea ice trends over time
  • Pete Best on Unforced variations: Jun 2025
  • David on Predicted Arctic sea ice trends over time
  • Piotr on Unforced variations: Jun 2025
  • William on Unforced variations: Jun 2025
  • Piotr on Predicted Arctic sea ice trends over time
  • William on Unforced variations: Jun 2025
  • David on Predicted Arctic sea ice trends over time
  • William on Unforced variations: Jun 2025

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,367 posts

11 pages

243,633 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.