On Mid-latitude Storms

Statements often appear in the media about suggesting that more extreme mid-latitude storms will result from global warming. For instance, western Norway was recently battered by an unusually strong storm which triggered many such speculations. But scientific papers on how global warming may affect the mid-latitude storms give a more mixed picture. In a recent paper by Bengtsson & Hodges (2006), simulations with the ECHAM5 Global Climate Model (GCM) were analysed, but they found no increase in the number of mid-latitude storms world-wide. Another study by Leckebusch et al. (2006) showed that the projection of storm characteristics was model-dependent. (Note that the dynamics of tropical and mid-latitude (often called ‘extra-tropical’) storms involve different processes, and tropical storms have been discussed in previous posts here on RC: here, here, here, and here).

The factors that control this are often confounding and so make this a tricky prediction. Simple arguments based on the expected ‘polar amplification‘ and the fact that the surface temperature gradient between the tropics and the poles will likely decrease would reduce the scope for ‘baroclinic instability’ (the main generator of mid-latitudes storms). However, there are also increases in the upper troposphere/lower stratospheric gradients (due to the stratosphere cooling and the troposphere warming) and that has been shown to lead to increases in wind speeds at the surface. And finally, although latent heat release (from condensing water vapour) is not a fundamental driver of mid-latitude storms, it does play a role and that is likely to increase the intensity of the storms since there is generally more water vapour available in warmer world. It should also be clear that for any one locality, a shift in the storm tracks (associated with phenomena like the NAO or the sea ice edge) will often be more of an issue than the overall change in storm statistics.

Page 1 of 3 | Next page