Regional Climate Projections

Europe In general, chapter 11 states that the most rapid warming is expected during winter in Northern Europe and during summer in southern Europe. The projections also suggest that the mean precipitation will also increase in the north, but decrease in the south. The inter-annual temperature variations is expected to increase as well.

A more detailed picture was drawn on the results from a research project called PRUDENCE, which represents a small number of TAR GCMs. The time was too short for finishing new dynamical downscaling on the MMD.

The PRUDENCE results, however, are more appropriate for exploring uncertainties associated with the regionalisation, rather than providing new scenarios for the future, since the downscaled results was based on a small selection of the GCMs from TAR.

Therefore, I was surprised to see such an extensive representation of the PRUDENCE project in this chapter, compared to other projects such as STARDEX and ENSEMBLES. (One explanation could be that the STARDEX results are used more in WGII, although apparently not cited. The results from ENSEMBLES are not yet published, and besides STARDEX is mentioned twice in section 11.10.)

Glomfjord precipitation

There are some results for Europe presented in chapter 11 of IPCC AR4 which I find strange: In Figure 11.6 the RCAO/ECHAM4 from the PRUDENCE project yields an increase in precipitation up to 70%(!) along the west coast of mid-Norway. Much of this is probably due to an enhanced on-shore wind due to a systematic lowering of the sea level pressure in the Barents Sea, and an associated orographic forcing of rain.

The 1961-90 annual total precipitation measured at the rain gauge at Glomfjord (66.8100N/13.9813E; 39 m.a.s.l.) is 2069 mm/year, and a 70% increase will therefore imply an increase to 3500mm/year (Left figure) which in my opinion is unrealistic . Apart from a sudden jump in the early part of the Glomfjord record, there are no clear and prominent trends in the historical time series (Figure left). The low values in the early part are questionable as the neighbouring station series do not exhibit similar jumps/breaks and is probably a result of a relocation of the rain gauges.

An increase of annual rainfall exceeding 1000mm would imply either that evaporation from the Norwegian Sea area must increase dramatically, or the moisture convergence must increase significantly since the water must come from somewhere. However, the whole region is already a wet region (as indicated by the annual rainfall totals) in the way of the storm tracks.

There are large local variations here (see grey curves in left Figure for nearby stations) and Glomfjord is a locations with high annual rainfall compared to other sites in the same area, but even a 70% increase of the rainfall with annual totals exceeding 1000mm at nearby sites (adjacent valleys etc) is quite substantial.

However, one may ask whether the rainfall at Glomfjord may change at a different rate to that of its surroundings. This question can only be addressed with empirical-statistical downscaling (ESD) at present, as RCMs clearly cannot resolve the spatial scales required.

To be fair, another PRUDENCE scenario presented in the same figure, but based on the HadAM3H model rather than the ECHAM4, suggests an upper limit for precipitation increase over northern Europe of 20% over northern Sweden.


Asia One of the key climate characteristics of Asia is the southeast Monsoon system. Chapter 11 suggest that the circulation associated with the Monsoon may slow down, but the moisture in the air may increase. However, while the general seasonal migration of rain is simulated by most climate models, the representation of the observed monsoon maximum rainfall along the west coast of India, northern parts of Bay of Bengal and north India is poor in many models (probably because of too coarse spatial resolution in GCMs).

Page 2 of 7 | Previous page | Next page