Winds of change

Gavin Schmidt and Michael Mann

There was an interesting AP story this week about possible changes in wind speed over the continental US. The study (by Pryor et al (sub.)), put together a lot of observational data, reanalyses (from the weather forecasting models) and regional models, and concluded that there was some evidence for a decrease in wind speeds, particularly in the Eastern US. However, although this trend appeared in the observational data, it isn’t seen in all the reanalyses or regional models, leaving open a possibility that the trend is an artifact of some sort (instrumental changes, urbanization etc.). If the effect is real though, one would want to see whether it could be tied to anything else (such as forcing from greenhouse gas or aerosol increases), and indeed, whether it had any implications for wind-generated electricity, water evaporation etc.

Amusingly, both of us were quoted in the story as having ostensibly conflicting views. Mike was quoted as finding the evidence for a trend reasonably convincing, while Gavin was quoted as being unconvinced of the evidence for an anthropogenic climate change signal (note that the two statements are not in fact mutually inconsistent). As one should expect in any news story, these single lines don’t really do justice to the longlonger interviews both of us gave the reporter Seth Borenstein. So what is the bigger context?

First some background. It’s important to note that ‘windiness’ is not a globally uniform field, and that changes will occur in different regions for very different reasons. Also, note that mean wind speed is not the same as storminess*.

Winds in the mid-latitudes are a function of the jet stream and of the ‘baroclinic instability’ that we see as low-pressure systems. In the tropics, winds locally depend strongly on convective activity and on a larger scale, the Hadley circulation. In monsoonal regions (West Africa, India etc.), winds are a function of the temperature contrasts over land and sea during the warm seasons. Winds can be affected by the ozone hole in the Southern Ocean, a change in the orbit of the Earth in the tropics, or by the presence or absence of an ice sheet. So the concept of winds changing in a general sense is not unusual or unexpected. However, because of the many distinct influences you wouldn’t expect all winds to increase or decrease together.

In the free atmosphere off the equator, wind is essentially ‘geostrophic’ which means that it’s driven by the (predominantly north-south) gradients in air pressure, and follows contours of constant pressure (’isobars’). Near the surface, friction slows the winds, and causes them to cross the isobars from high to low pressure (hence we get ‘convergence’ in the center of surface low pressure regions). Nonetheless, changes in surface winds will follow approximately from the associated change in the surface pressure field.

Page 1 of 3 | Next page