RealClimate logo

Yet more aerosols: Comment on Shindell and Faluvegi

Guest post from Drew Shindell, NASA GISS

Our recent paper “Climate response to regional radiative forcing during the twentieth century”, has generated some interesting discussion (some of it very ‘interesting’ indeed). So this post is an attempt to give a better context to the methods and implications of the study.

More »

Aerosol effects and climate, Part II: the role of nucleation and cosmic rays

Filed under: — group @ 15 April 2009 - (Italian)

Guest post by Bart Verheggen, Department of Air Quality and Climate Change , Energy research Institute of the Netherlands (ECN)

In Part I, I discussed how aerosols nucleate and grow. In this post I’ll discuss how changes in nucleation and ionization might impact the net effects.

Cosmic rays

Galactic cosmic rays (GCR) are energetic particles originating from space entering Earth’s atmosphere. They are an important source of ionization in the atmosphere, besides terrestrial radioactivity from e.g. radon (naturally emitted by the Earth’s surface). Over the oceans and above 5 km altitude, GCR are the dominant source. Their intensity varies over the 11 year solar cycle, with a maximum near solar minimum. Carslaw et al. give a nice overview of potential relations between cosmic rays, clouds and climate. Over the first half of the 20th century solar irradiance has slightly increased, and cosmic rays have subsequently decreased. RC has had many previous posts on the purported links between GCR and climate, e.g. here, here and here.

More »

Aerosol formation and climate, Part I

Filed under: — group @ 13 April 2009 - (Italian)

Guest post by Bart Verheggen, Department of Air Quality and Climate Change , Energy research Institute of the Netherlands (ECN)

The impacts of aerosols on climate are significant, but also very uncertain. There are several reasons for this, one of which is the uncertainty in how and how fast they are formed in the atmosphere by nucleation. Here, in part I, I’ll review some of the basic processes that are important in determining the climate effects of aerosols, focusing in particular on their formation. This is also relevant in order to better understand –and hopefully quantify- the hypothetical climate effects of galactic cosmic rays which I’ll discuss in a follow-up post.

More »

Olympian efforts to control pollution

Filed under: — gavin @ 14 March 2009

There is a new paper in Science this week on changes to atmospheric visibility. In clear sky conditions (no clouds), this is related mainly to the amount of aerosols (particulate matter) in the air (but is slightly dependent on the amount of water vapour as well, which is corrected for in this study). The authors report that the clear-sky visibility has decreased almost everywhere (particularly in Asia) from 1973 to 2007, with the exception of Europe where visibility has increased (consistent with the ‘brightening trend’ reported recently). Trends in North American stations seem relatively flat.

There is another story that didn’t get as much press when it came out late last year but that is highly relevant to this issue – whether any of the efforts that the Chinese authorities to reduce air pollution ahead of the Olympics last year had any impact. To the extent that they did, they might point the way to reducing aerosols and other pollutants across Asia, but it might also reveal how hard it is to do so.
More »

Climate change methadone?

Filed under: — gavin @ 20 August 2008

Geoengineering is increasingly being discussed (not so sotto voce any more) in many forums. The current wave of interest has been piqued by Paul Crutzen’s 2005 editorial and a number of workshops (commentary) and high profile advocacy. But most of the discussion has occurred in almost total ignorance of the consequences of embarking on such a course.

A wider range of people have now started to publish relevant studies – showing clearly the value of continued research on the topic – and a key one came out this week in JGR-Atmospheres. Robock et al used a coupled GCM with interactive aerosols to see what would happen if they injected huge amounts of SO2 (the precursor of sulphate aerosols) into the tropical or Arctic stratosphere. This is the most talked about (and most feasible) geoengineering idea, based on the cooling impacts of large tropical volcanic eruptions (like Mt. Pinatubo in 1991). Bottom line? This is no panacea.
More »

Switch to our mobile site