Guest commentary by Figen Mekik – Grand Valley State University
“But Figen, humid air feels oppressive, heavy!” students told me, almost in unison. A very treasured moment indeed. I just got a glimpse of probably a long held misconception: water vapor is heavier than dry air. So, we took out our periodic tables and calculators, and went on to calculate the molecular weight of H2O and how it compares to that of N2 and O2 (most of the atmosphere). Happy that I corrected a major fallacy, I didn’t see the rest coming.
Apparently, there are many other sinister fallacies lurking just underneath the surface of the heavy wet air idea. One student asked “is the formula for water vapor the same as for liquid water?” and was astonished to find out that it is always H2O regardless of phase, even in ice! I said “we like to keep things simple in science” and a couple of ladies giggled “as if!”
Then another admitted that he always thought water split into H2 and O2 upon evaporation which would make wet air heavy. Another student answered him with “No way man. When water vapor condenses to liquid, the molecules get bigger which is why liquid water is heavier than vapor.” So we had a long discussion about molecular dynamics of evaporation and condensation. Also, once I helped the students realize the stark contrast between what they think they know (water vapor is heavy) and something else they know from the Weather Channel (low pressure means rain), the cognitive dissonance (the psychological tension created by conflicting knowledge) drove them to question both “bits of knowledge” and to adjust their ideas. By the end of the hour, they were saying this is SOOO weird, humid air rises. Who knew!
Here are some other common and very tenacious misconceptions:
[1] Seasons are caused by cyclical changes in Earth’s proximity to the Sun. The main causes underlying this one likely are that [a] intuitively it makes sense and [b] textbooks frequently exaggerate the eccentricity of Earth’s orbit to the extreme that such an idea is logical. The problem is this misconception is extremely popular, from kindergarten to high school physics teachers. A very confused young man once told me openly “Well, my third grade teacher told me that the Earth’s axis is tilted and that is why we get different seasons and it’s winter in the northern hemisphere, when it’s summer in the southern hemisphere. My high school earth science teacher told me during the summer we are closer to the Sun and summers are hot everywhere. Now you are saying my grade school teacher was right all along. And there is all this hype about sunspot activity being the real cause behind global warming. Since the Sun causes our seasons for whatever reason, that sounds believable to me. But you say it’s CO2 in the atmosphere causing global warming. How do I know I can trust you?”
He has a point! And it is very difficult to address the inconsistencies in his education convincingly. I could have told him about my PhD and that I am a climate scientist, but that really doesn’t have much currency in such situations. So I acknowledged that he has a valid point and devoted the next month to demonstrations and data and error margin analysis to empower the students to the point that they could understand the science for themselves. We couldn’t cover coastal geology that semester because we ran out of time, but I think it was worth it anyway.
[2] The hole in the ozone layer and atmospheric pollution (including but not limited to aerosols) cause global warming. Like the previous one, this one is also very tenacious and difficult to dispel because it is often presented this way in the media and most primary and secondary school teachers share the same fallacy. Perhaps one of the underlying faulty notions here is that the Earth receives heat from the Sun, instead of radiation. So, the thinking here is that the ozone layer shields our planet from the Sun’s harmful rays and its heat. And because there is a hole in the ozone layer, the extra heat seeps in and gets stuck under the ozone layer causing the greenhouse effect. I know, yikes!! I try to dispel this misconception by explaining that though the sun is indeed quite hot, there is all this empty space between the Sun and our planet and heat travels to Earth as infrared radiation from the sun, but the Sun’s output of infrared is only a fraction of its output as visible light. Energy from the sun mostly reaches us as visible light and ultraviolet radiation. (Minor edit to remove confusion with sensible heat and radiation. Sorry about that!).
However, the notion that global warming and ozone depletion are linked is not entirely wrong. As was discussed earlier on RealClimate (Ozone depletion and global warming), original CFC’s as well as ozone itself are powerful greenhouse gases and stratospheric cooling caused by the increase in atmospheric CO2 actually accelerates ozone loss there. Even the replacement gases to be used in lieu of CFCs may have significant greenhouse warming potential. BUT, ozone depletion (“the hole in the ozone layer”) does not cause global warming.
This discussion eventually lends its way to a discussion of aerosols (see Aerosols: the Last Frontier) and although aerosols tend to scatter or absorb incoming solar radiation (hence a warming effect), their net effect is in the direction of cooling because they have a positive influence on the nucleation of clouds which increases our planet’s albedo (ability to reflect light).
[3] The greenhouse effect and global warming are the same thing. This is another yikes!! Perhaps the root of the problem here is that the discussion of the greenhouse effect in the classroom is often tightly linked with that of global warming. It needs to be explicitly pointed out to students that without the greenhouse effect our planet’s surface would be about 30 degrees C cooler and with wild differences in temperature between night and day. Not exactly habitable. But anthropogenic global warming is caused by the human-induced increase of greenhouse gases in the atmosphere since the Industrial Revolution, particularly CO2. Most of the past changes in climate on glacial-interglacial timescales can be explained by invoking changes in solar activity and greenhouse gas concentrations in the atmosphere, sure. But the warming we have been experiencing in the last few decades cannot be explained if we do not include the effect of greenhouse gases released by human activities (see the IPCC 4th Assessment SPM, and Avery and Singer: Unstoppable Hot Air, just to name a couple).
[4] Toilets flush in opposite directions in the northern and southern hemispheres. This one is kind of a pedagogically useful misconception because although it is absolutely wrong, the idea behind it is correct and it is primarily a matter of scale. Having said that, I find the Coriolis effect to be one of the most challenging topics for students to grasp as soon as we move beyond its initial descriptive definition. There is often lots of confusion between “to the right” and “to the east” in the northern hemisphere. Plus when we add another dimension to the mix (vertical) in discussing tropical hurricanes, this becomes a serious barrier to understanding. So, I try to avoid any directional terms, like east or west as well as clockwise or counter-clockwise. Not because students are too young to know a non-digital traditional clock, but because from satellite images hurricanes look like they are rotating counter-clockwise. Really can’t argue with what the students are seeing for themselves. But if we keep the terms simple, “moving objects in the northern hemisphere are deflected to the right within the frame of reference of the moving object,” it becomes a little easier to understand, though still challenging. Another challenge here is that the Coriolis effect comes across as a force and it is difficult for students who have not had physics to distinguish between a force and a deflection (an effect).
Perhaps you are now thinking “this may be true in some university in west Michigan but surely in other, more prestigious universities the students know better!” If only this were true. A Private Universe is a video documenting lingering misconceptions among Harvard graduates about the causes behind seasons and lunar phases. The problem is misconceptions are hard to detect because most students are adept at answering questions with exactly what the teacher wants to hear and with correct terminology but without any real understanding of the science. After nine years of collegiate teaching I now know to encourage a casual “say whatever is on your mind” attitude with students. This way, I am hoping to get them to inadvertently voice their misconceptions so I can address them.
And one may be tempted to think this is solely an American problem because the American system of education has been exposed to some serious criticism of late. Again, not so! It’s a global problem. Here are some examples from a couple of quick Google searches. Greek kindergarten teachers harbor deeply rooted confusion about the “ozone hole” and the “greenhouse effect;” while Greek primary school teachers think the ozone hole causes climate change. Australian university students believe a large portion of the ozone hole is over Australia and that the high rate of skin cancer is largely caused by this hole. Junior high school students in Israel seem to understand various processes within the hydrologic cycle, but believe its beginning point is the ocean and the end point is groundwater. And some Turkish in-service physics teachers believe that the moon does not rise and set while Turkish pre-service science teachers think summer is warmer than winter because the Earth is closer to the sun in the summer time.
How about you? Take this quiz to see where you stand ;) Update: Apparently the quiz has been taken off line…
I think, however, there may be some room for improvement in the wording and explanations in this quiz because some questions are very obscure, ambiguous and Chicago-centric. I would like to know what commenters think about it.
Where do misconceptions come from? Personal experiences and intuitive understanding play a large part in fostering misconceptions, and most false notions are reinforced through school and the media. I would like to share with you this delightful and brief story of how personal experiences color the judgment of a bunch of 4th graders about the nature of heat. They have a wise science teacher who broaches the topic with a question: “can you give me an example of something that is hot?” She is expecting answers like the Sun, or a stove or maybe even Britney Spears. But the students say sweaters, hats, and coats. One says “rugs are wicked hot.” The teacher says “when I touch your sweater it doesn’t feel hot.” The students say “Ooh, it’s a matter of time. With time it can be 200 degrees!” Hmmm.. Can you blame them? They spent at least nine years in cold Massachusetts winters and their parents and teachers always told them to put on their warm clothes.
Like this example, some of the problem underlying misconceptions stems from language. “Warm clothes” implies clothes that emit heat, “greenhouse gas” suggests greenhouses are warm because of their gas content, “the rise and set of the sun” suggests the sun is moving across the sky, not the earth is rotating on its axis, and “the theory of relativity” implies all things are relative when actually the theory is based on the constancy of the speed of light.
Let’s go back to our 4th grade class to see how this very experienced teacher addressed the problem. She could just come right out and say “that’s ridiculous, you’re clothes don’t emit heat, they trap the heat your bodies emit.” That would certainly save time to cover more content; instead she decides to do something else (e.g. concept/inquiry based learning for the educators out there). She says “Tomorrow I want everyone to bring something hot from home.” The next day sweaters, scarves, hats and even a down sleeping bag arrive. The teacher puts a thermometer into each one and they wait until the next day for them to get hot on the inside. The students are convinced the down sleeping bag will be 400 degrees! They rush in the next morning and quickly check their thermometers. 68 degrees! They’re shocked. But convinced? Not a chance! They are not going to dismiss 9 years of personal experience just like that. “Cold air got in there!” says one little girl. “When I sit in the car with the windows up, it gets hot. We need to hide our clothes.” So sweaters and hats get put into drawers and closets with their thermometers snuggly in them. Another night goes by. The next day they rush in and check their thermometers again. Again 68 degrees! Except one student has 69 degrees. They all applaud. Still not convinced, after all there has been indication in the right direction! Several nights go by like this. Finally serious doubt begins to ensue. So the teacher says “I want everyone who believes clothes are hot to walk to this corner” and she points left; “and the ones who think clothes trap the heat our bodies emit to this corner” and she points right. Most of the students go to the right but three stubborn ones go to the left. Guess you will always have the denialists! But no matter what, these students experienced two things more important than heat: the scientific method in action and sometimes the way something feels is only that and not reality.
So, are misconceptions barriers to understanding or helpful pedagogical tools? That will largely depend on the individual teacher’s (professor’s) style and interests. But the important thing is to [1] challenge misconceptions, [2] demonstrate their faultiness through carefully devised experiments (ideally by the students), [3] help develop multiple working hypotheses to understand the meaning of the results of these experiments, [4] devise more experiments to test and retest each hypothesis, and [5] NEVER let a student leave the classroom with a diagnosed misconception uncorrected. And, perhaps the most effective method for eradicating misconceptions at every level is going to be investing large quantities of time, money and effort into educating primary and secondary school educators. NSF has many programs that fund such efforts, but much more effort is clearly needed on a global scale.
Disclaimer: I am not an educational psychologist. I am simply a college professor and ocean/climate scientist enjoying a rich and intense teaching career in the Geology Department at GVSU. Also, my anecdotes and all my quotations are intentionally fictionalized to protect the confidentiality of students. The ideas expressed in the quotes are amalgamations of multiple repeated ideas expressed to me from students, professors and colleagues alike since I started graduate school in 1991 at Middle East Technical University in Ankara, Turkey; and the misconceptions I mention are not unique to any of my students but are listed in over 7000 published misconceptions about science.
Yazan ve Ingilizce’den çeviren Figen Mekik – Grand Valley State University
“Ama Figen, nemli hava ağır geliyor!” dedi öğrencilerim, neredeyse hepsi bir ağızdan. Gerçekten çok değerli bir an. Belki uzun yıllardan beri yanlış bildikleri bir şey yüzeye çıktı: su buharı kuru havadan daha ağırdır. Hemen hesap makinalarımızı ve periyotlar cetvelimizi çıkarttık ve H2O’nun moleküler ağırlığını hesaplayarak, N2 ve O2’ninkilerle (havakürenin büyük bir kısmı) kıyasladık. Büyük bir yanlış olguyu düzelttim diye sevinirken gerisini göremedim.
Meğerse bu ağır nemli hava fikrinin hemen altında daha yanlış başka düşünceler de varmış. Bir öğrencim sordu: “su buharıyla sıvı suyun formülü aynı mı?” Hangi halde olursa olsun suyun formülünün hep H2O olduğunu duyunca çok şaşırdı. Hatta buzun bile! “Bilimde herşeyi basit tutmaya çalışırız” dedim. Bir iki kız güldü “hiç de bile!”
Sonra başka bir öğrencim itiraf etti ki hep su buharlaşınca H2 ve O2’ye bölündüğünü zannedermiş. Bu durumda nemli hava daha ağır oluyor. Başka bir tanesi cevap verdi “Öyle olur mu ya.. Su buharı, sıvı hale dönüşünce moleküller büyür. Bu yüzden sıvı su, buhardan ağırdır.” Hemen buharlaşma ve sıvılaşmanın moleküler dinamiği üzerinde uzun bir tartışmaya giriştik. Ayrıca bildiklerini zannettikleri bir şey ile (su buharı ağırdır) televizyondaki hava durumu yayınlarından bildikleri bir başka şeyi (alçak basınç yağmur demek) karşılaştırınca, bu iki fikir arasındaki çelişki onları “bildiklerini” tekrar düşünmeye ve düzeltmeye mecbur etti. Bir saatin sonunda “Çok tuhaf, meğerse nemli hava yükselirmiş, kim bilebilirdi ki,” demeye başladılar.
Bunlar gibi çok yaygın olan bir kaç başka yanlış kanı da şunlar:
[1] Mevsimler, dünyanın düzenli olarak güneşe yakınlaşmasından ve uzaklaşmasından meydana gelir. Bu yanlış bilginin muhtemel sebepleri (a) içgüdüsel olarak mantıklı oluşu, ve (b) ders kitaplarında dünyanın yörüngesindeki elips şeklinin çok abartılması; o kadar ki bu yanlış düşünce makul oluyor. Ancak maalesef bu çok yaygın bir yanlış kanı, taa ana okulundan lise fizik öğretmenlerine kadar. Aklı çok karışmış bir genç adam bana şunu demişti: “Ilk okul 3. sınıf öğretmenim mevsimlerin, dünyanın ekseninin yörünge düzlemine göre dik olmayışından kaynaklandığını; kuzey yarımkürede kışken, güney yarımkürede yaz olduğunu söylemişti. Oysa lisedeki yerbilimleri öğretmenim dünya güneşe yakınken yaz olur, uzakken kış olur dedi. Yani yazın dünyanın her yeri sıcaktır. Şimdi siz diyorsunuz ki ilk mektep öğretmenim haklıymış. Sonra, güneş lekelerindeki faaliyet artışı sebebiyle yerküremiz ısınıyor diyorlar. Eğer güneş mevsimleri yaratacak kadar etkiliyse (hangi sebeple olursa olsun), bu düşünce bana mantıklı geliyor. Ama siz diyorsunuz ki küresel ısınmanın esas sebebi insanların havaküreye ekledikleri CO2. Size nasıl güvenebilirim?”
Haklı! Eğitimindeki çelişkileri düzeltmek çok zor. Ve böyle durumlarda ben doktoralı bir iklim bilimciyim demenin ne pek bir değeri ne de etkisi oluyor. Onun için, haklı olduğunu kabul ettikten sonra bir ay boyunca dersi, öğrencilerle deneyler yapmaya ve veri ve hata payı analizlerine adadik. O dönem kıyısal jeolojiyi işleyecek vakit kalmadı ama yinede değdi bence.
[2] Ozon tabakasındaki delik ve hava kirliliği (aerosol adı verilen küçük parçacıklara varıncaya kadar) küresel ısınmaya sebep oluyor. Bir önceki gibi bu da çok yaygın ve düzeltilmesi güç bir yanlış kanı. Medya ve pek çok ilkokul ve lise öğretmeni tarafından da böyle anlatılıyor bu konu. Belki de bunun sebeplerinden biri dünyaya güneşten ışınım değil ısı ulastığının zannedilmesi. Yani ozon tabakası gezegenimizi hem güneşin zararlı ışınlarından hem de ısısından koruyor. Ama delik olduğuna göre altına fazla ısı sızıyor ve sonra alt tabakalarda hapis kalıyor bu ısı, ve böylece küresel ısınma oluyor. Biliyorum, eyvah! Bu yanlış düşünceyi düzeltmek için ben öğrencilere diyorum ki güneş tabii ki çok sıcak ama aynı zamanda da çok uzak, ve dünya ile güneş arasında büyük bir boşluk var. Dünyamıza güneş ısınımın bir kısmı kızılötesi (ısı) olarak gelse de, güneş o kadar sıcak ki ışınımının sadece az bir kısmı kızılötesi, büyük bir kısmı ise görülebilir ışık ve morötesi ışınlar halinde bize ulaşıyor. (Burada hissedilebilir ısı ile ışınım arasındaki farkı belirtmek için küçük bir düzeltme yaptık. Kusura bakmayın.)
Ancak, ozon azalması ile küresel ısınma ilişkilidir kavramı o kadar da yanlış değil. Daha önce de burada tartışıldığı gibi (Ozon Azalması ve Küresel Isınma), ilk CFC gazları ve hatta ozonun ta kendisi aslında kuvvetli birer sera gazıdır. Buna ek olarak, küresel ısınmayla oluşan stratosferdeki soğuma, orada ozon tabakasının incelişini hızlandırıyor. Ve hatta CFC’lerin yerine kullanılan gazların dahi sera gazı olma potansiyeli olduğu saptandı. AMA, ozon tabakasındaki incelme (ozon tabakasındaki delik), küresel ısınmaya sebep olmuyor.
Öğrencilerle bu tartışmamız er ya da geç havadaki aerosolleri de kapsamaya başlıyor. (Aerosols: the Last Frontier). Aerosoller her ne kadar güneşten gelen ışınları emip dağıtarak biraz ısınmaya sebep olsalar da, daha büyük etkileri soğuma doğrultusunda oluyor. Çünkü bulut oluşumunu olumlu yönde etkileyip gezegenimizin albedosunu (ışık yansıtma özelliğini) arttırıyorlar.
[3] Sera etkisi ve küresel ısınma aynı şeydir. Bu da eyvah! Belki bu yanlış olgunun kökünde çok zaman ders anlatılırken sera etkisi ile küresel ısınma konuları birlikte işleniyor. Öğrencilere açıkça belirtilmeli ki sera etkisi olmasaydı, gezegenemizin ortalama sıcaklığı 30 derece C daha az olduğu gibi, gece-gündüz arasında aşırı ısı farkı olurdu. Pek yaşam için uygun bir iklim değil. Ancak insan eliyle meydana gelen küresel ısınma, sanayi devriminden bu yana atmosferdeki sera gazlarının, özellikle CO2’nin, artmasındandır. Gezegenimizin geçmişinde buzulçağı ve buzulçağı-arası dönemlerdeki iklim değişimleri hem güneş faaliyetleri hem de sera gazlarındaki doğal artma ve azalmalar ile açıklanabiliyor elbette. Ancak son bir kaç onyıldır yaşadığımız küresel ısınma mıktarını açıklamak için muhakkak insanların havaküreye eklediği CO2’yi hesaba katmak gerek (mesela, IPCC 4th Assessment SPM ve Avery and Singer: Unstoppable Hot Air).
[4] Kuzey ve güney yarımkürede sifon çekildiğinde tuvaletteki su birbirinden farklı yönde döner. Bu aslında pedagojik olarak kullanışlı bir yanlış kanı. Tamamıyla asılsız olmasına rağmen, temelindeki esas doğru ve sadece bir ölçek meselesi bu. Bunu dedikten sonra eklemeliyim ki Koriolis etkisi öğrencileri en çok zorlayan konuların başını çekiyor. Öğrenciler genellikle sağa doğru yönelmeyle, doğuya doğru yönelmeyi biribirine karıştırıyor. Ayrıca konuya bir boyut daha ekleyip dikey yöndeki hareketi de ele alınca (tropik fırtınalar gibi), öğrenciler için bu iyice içinden çıkılamaz bir konu haline geliyor. Bu yüzden doğu-batı, saat yönünde veya aksinde gibi deyimleri hiç kullanmamaya özen gösteriyorum. Bunu, öğrencilerim dijital olamayan klasik saatleri tanımayacak kadar genç olduklarından yapmıyorum. Bu konu uzerinde durmamın sebebi uydu fotoğraflarına baktığımızda, fırtınaların kuzey yarımkürede saat yönünün tersine döndüğünü (yani sola) görmemizdir. Öğrencilerin açıkça “sola dönüş” olarak görebildiği bu olguyu inkar etmek mümkün değil. Ama açıklamamızı basit tutar, “Kuzey yarımkürede hareket eden cisimler, hareketleri doğrultusundan sağa doğru kayarlar” dersek anlaşılması biraz kolaylaşıyor. Ama yine de çok zor bir konu bu. Burada bir başka zorluk da Koriolis etkisinin bazan bir güç olarak algılanması. Henüz fizik dersi almamış öğrenciler bir güçle etkinin arasindaki farkı bilemiyorlar.
Belki de şimdi içinizden diyorsunuz ki “batı Michigan’daki bir okulda böyle olabilir, ama daha prestijli üniversitelerde muhakkak ki öğrenciler daha bilgilidir.” Ah keşke böyle olsa. Kendine Göre bir Kainat (A Private Universe) adlı video, Harvard mezunlarının mevsimlerin oluşma sebebi ve ayın evrelerinin nedeni hakkında ne kadar cahil olduğunu sergiliyor. Bu yanlış kanıların yaygınlığının sebebi, bunları öğrencilerde tespit etmenin çok zor oluşu. Öğrenciler, öğretmenin duymak istediği cevabı vermekte, ve doğru kelimeleri kullanmakta usta, ama çoğu zaman kavramları iyi anlamış değiller. Dokuz yıldır üniversitede eğitmenlik yaptıktan sonra öğrencilerimi “akıllarına geleni” söylemeye teşfik etmeyi öğrendim. Böylece, farkına varmadan bana yanlış bilgilerini belirtirler de, ben de düzeltirim diye umuyorum.
Bunu sadece Amerikalıların sorunu olarak görebilirsiniz belki çünkü son zamanlarda Amerikan eğitim sistemi çok eleştirilir oldu. Ama bu da maalesef doğru değil. Internette bir iki çabuk tarama şu sonucları verdi: Yunanlı anaokulu öğretmenleri ozon deliği ile küresel ısnmayı birbirine karıştırıyor. Yunanlı ilkokul öğretmenleri ozon deliğinin iklim değişikliğine sebep olduğunu zannediyor. Avusturalyalı üniversiteli gençler ozon deliğinin büyük bir kısmının Avusturalya uzerinde olduğuna inandıkları gibi, cilt kanserindeki artışları da buna bağlıyorlar. Israil’de orta okul öğrencileri küresel su devinimindeki belli şeyleri iyi bilselerde, bu büyük döngünün okyanusta başlayıp yeraltı suyunda bittiğini zannediyorlar. Ve bazı Türk fizik öğretmenleri ayın doğup battığına inamadığı gibi, bazı Türk öğretmen adayları ise yaz aylarında dünyanın güneşe daha yakın olduğunu zannediyorlar.
Peki ya siz? Bu küçük sınavcıkla kendinizi deneyin bakalım. ;) (Sınavı yenilemek üzere şimdilik kaldırdılar galiba)
Fakat bu sınavda bazı sözcük ve anlatım hataları var sanırım. Ayrıca bazı sorular çok detaylı veya belirsiz veya Chicago-merkezli. Ama hakkında ne düşündüğünüzü bilmek isterim.
Peki bu yanlış kanılar nereden çıkıyor? Kişisel deneyimlerin ve içgüdüsel anlayısların büyük payı var bu yanlış algılamaların gelişmesinde ve okul boyunca pekişmesinde. Size çok tatlı bir kısa hikaye anlatmak istiyorum. Bir grup 4. sınıf öğrencisinin ısı konusunu öğrenirken ki maceraları. Çok bilinçli bir öğretmenleri var, ve ısı konusunu onlara bir soru yönelterek açıyor: “Bana sıcak bir şey örneği verin.” Öğretmen güneş veya ocak gibi yanıtlar beklerken küçükler palto, şapka, hırka deyiveriyorlar. Bir tanesi “halılar fena sıcak” diyor. Öğretmen “ama ben hırkanı tutunca sıcak gelmiyor” deyince “ohhh, bu bir zaman meselesi, zamanla 200 derece bile olur!” diyor öğrenciler. Kusur bulabilir misiniz? Hayatlarının dokuz kışı soğuk Massachusetts de geçmiş ve anne-babalar ve öğretmenler hep “sıcaklarını” giy yavrum demişler.
Bu örneğin gösterdiği gibi sorunun bir bölümü dilden kaynaklanıyor. “Sıcak giyim” sanki ısı yayan bir hırka izlenimi bırakıyor; “sera gazı” sanki seralar gaz içeriğinden dolayı sıcakmış intibası veriyor; güneşin doğusu-batısı sanki güneş gök yüzünde hareket ediyormuş anlamını veriyor ama aslında dönen dünya; ve “görecelik kuramı” sanki her şey görecelidir der gibi oluyor ama kuramın esası ışık hızının değişmezliğine dayanır.
4. sınıfımıza geri dönelim, bakalım öğretmenimiz bu durumla nasıl başa çıkacak. Tabii ki “Çocuklar öyle şey olur mu, sıcak olan sizsiniz” diyebilir. Bu çok zaman kazandıracak ve daha çok konu işlemeyi mümkünleştirecek bir tutum olur muhakkak. Ama bu öğretmen çok tecrübeli ve onları hiç kırmıyor. “Peki, herkes yarın evinden sıcak bir şey getirsin” diyor. Ertesi gün şapkalar, atkılar, paltolar ve hatta bir kuş tüyü uyku tulumu geliyor. Öğretmen her parçanın içine bir termometre koyuyor ve gecenin geçmesini bekliyorlar ki zamanla herşeyin içi kızışsın diye. Öğrenciler uyku tulumunun 400 derece Fahrehayt olacağından eminler. Ertesi gün pür heves gelip termometrelerine bakıyorlar. 68 derece F! (18 derece C). Hepsi çok şaşırıyor. Ama kani oldular mı? Kesinlikle hayır! Dokuz yıllık kişisel deneyimlerinden öyle hemen vazgeçerler mi? “Içlerine soğuk hava girdi” diyor bir küçük kız. “Ben arabada camları kapatıp oturunca çok terliyorum. Elbiselerimizi saklamamız lazım,” diyor. Hemen her şey çekmecelere, dolaplara dolduruluyor, her parçanın içinde termometresi var tabii. Bir gece daha geçiyor. Sabah koşa koşa gelip bir bakıyorlar, yine 68 derece. Ama bir tanesininki 69 derece. Hepsi alkışlıyor. Bari doğru yönde bir gelişme var diye herhalde. Bu böyle bir kaç gece devam ediyor. Sonunda ciddi tereddütler doğmaya başlıyor. Öğretmen diyor ki “giysilerin sıcak olduğuna inananlar bu tarafa geçsin” ve solu gösteriyor. “Kendilerinin sıcak olup giysileri ısıttığını düsüneneler sağa geçsin” diyor. Hemen hemen hepsi sağa gidiyor ama üç tane inatçı sola gidiyor. Hep inkarcılar olacaktır herhalde! Ama ne olursa olsun bu çocuklar ısıdan çok daha önemli iki şey öğrendi: bilimsel sorgulamanın esasını ve bazan gerçeklerin hissedildiği gibi olmadığını.
Peki yanlış kanılar anlayısı engelleyen unsurlar mı yoksa pedagojik aletler mi? Bu her öğretmen’in tarzı ve yapısına göre değişecektir. Ama önemli olan [1] yanlış kanıları sorgulamak, [2] yanlış olduklarını deneyler vasıtasıyla göstermek (eğer öğrenciler deneyleri düzenlerse daha da iyi), [3] bu soruların yanıtlarını ararken pek çok hipotez üretmek ve [4] onları tek tek deneylerle sınamak ve [5] ne olursa olsun hiç bir öğrencinin ortaya çıkmış bir yanlış kanıyla sınıfı terketmemesini temin etmek. Ve belki daha da etkili olacak bir yol, devlet bilim kuruluşlarının öğretmenleri eğitmek için bol miktarda para, zaman ve çaba harcamaları olacaktır.
Açıklama: Ben eğitim psikoloğu değilim. Üniversite’de profesör ve deniz/iklim bilimcisiyim. GVSU’nun Jeoloji bölümünde son derece zengin bir eğitimcilik hayatı yaşamaktayım. Ancak burada anlattığım hikayeler ve atıflar, taa Orta Doğu Teknik Üniversitesinde 1991 yıllında mastır yapmaya başladığım sıradan beri sürekli ve tekrarli bir şekilde duyduğum yanlış kanılara dayanmaktadır. Bu yanlış kanılar da herhangi bir tek öğrencime ait olmayıp, yayınlanmış 7000 fazla yanlış bilgi üzerine dayandırılmıştır.
Forgot to mention. The BlueGene FPU is faily normal for a modern FPU but IBM did a very good job on it to get those FLOP/Mhz numbers out of it. :) If you read the design history there was an existing bolt-on FPU for 440s (440s did not have an integrated FPU.) that had one pipeline and could handle 1 Double. The FPU2 was designed to double the FPU1 performance while being both binary compatible and in a similar power footprint.
Re 217 (re 21)Tamino: “The mass of the chemicals left behind is reduced proportional to the energy radiated away…”
So, what is the source of that lost mass (or what gains mass in an endothermic reaction)? Does some very tiny subatomic particle disintegrate (or materialize from energy gained in an endothermic reaction)?
For a balanced view on the matter of mass loss in chemical reactions, I would point you to Wikipedia first and then the discussions here and here (in the first instance at least). Here endeth my off-topic contribution ;-)
Re: #252 (Chuck Booth)
No, when the potential (or any other) energy of a system changes, and the energy enters or escapes the system, that energy change contributes to the total mass of the system. So even if the number and type of particles is unchanged, the mass changes. In most chemical reactions, the mass change is so tiny that it’s nearly impossible to measure.
The references given by P. Lewis (#253) are quite good on this topic.
This is the best thing that I have ever read and I actually understood it considering that i’m fifteen years of age from Tennessee and it is
great to know somebody actually knows what the heck they are talking about. Well, anyway about the ozone layer and the hole that is incorporated is something i’m concerned with, but lately there has been an increase in ozone that has dramatically inclimented a change in the atmosphere itself if you’ve been watching the hole in the atmosphere above antarctica you would notice the ozone is coming back, but to my next topic of global warming. This is a very serious problem and we have been experiencing the effects of it. This winter we had alot of weird weather including weeks of extreme cold and weeks of fluential warmth. Now we have a certain problem called big storm syndrome like Two single storm cells fuseing to become one. If anybody has a clue or idea just post it cause this is really an awesome topic to discuss probably one of the best ones.
Ok just one more comment. I actually took the time to read all the entries and i’m rather intrigued at the funny things you people have tried such as the pen and globe thing that when you draw a straight line on a globe it will always reflect unless you draw backwards while spinning the object the opposite way which in this case differentiate the polarity of the north and southern poles. Like you people said the coriolis effect. In which case the object going around the earth in the opposite direction is most likely to be traveling twice as fast as upon entering the atmosphere, so would the object go further. One more thing if we slung shot something around the earth using the pull of gravity could we make in some case a slingshot effect. Just a question, Truly I think it would work and we could travel farther in outer space if we could generate this effect it is said we do not lose our momentum on non-gravatational areas such as space and time.
Thank you for listening if i’m wrong correct and do so quickly, Because i like messing with science and the fundamentals of space and time also known as 3rd and 4th demensions
Hi Jared,
Thanks for posting comments. I am glad you liked our post. Yes the ozone hole is definitely on the mend. But the recent freaky weather we’ve been having is just weather and not necessarily an indication of a climatic trend in one way or the other. I will have to respond to your comments about the coriolis effect on another day because I am about to leave on a trip for the weekend. Cheers,
>slingshot
Yes, gravity can be used either to speed up or slow down a spacecraft passing a planet. One discussion here:
http://www.mathpages.com/home/kmath114.htm
“… The limit is how fast you can loop around
a planet without dipping into its atmosphere too deeply (let alone
crashing into it). Some NASA missions have repeatedly skimed the
upper atmospheres of Venus and the Earth in their maneuvers …”
[[One more thing if we slung shot something around the earth using the pull of gravity could we make in some case a slingshot effect.]]
In fact I think NASA actually does launch west-to-east to take advantage of the Earth’s rotation. It’s not a huge advantage, but it’s a noticeable one.
Just a note to say thanks again to all who contributed with commnets. This has been very educational for me. :)