RealClimate logo

Unforced variations: Dec 2020

Filed under: — group @ 1 December 2020

This month’s open thread. Topics might include the record breaking hurricane season, odds for the warmest year horse race (and it’s relevance or not), or indeed anything climate science related.

Thinking, small and big

Filed under: — rasmus @ 29 November 2020

The point that climate downscaling must pay attention to the law of small numbers is no joke.

The World Climate Research Programme (WCRP) will become a ‘new’ WCRP with a “soft launch” in 2021. This is quite a big story since it coordinates much of the research and the substance on which the Intergovernmental Panel on Climate Change (IPCC) builds.  


Until now, the COordinated Regional Downscaling EXperiment (CORDEX) has been a major project sponsored by the WRCP. CORDEX has involved regional modelling and downscaling with a focus on the models and methods rather than providing climate services. In its new form, the activities that used to be carried out within CORDEX will belong to the WCRP community called ‘Regional information for society’ (RifS). This implies a slight shift in emphasis.


With this change, the WCRP signals a desire for the regional modelling results to become more useful and relevant for decision-makers. The change will also introduce a set of new requirements, and hence the law of small numbers.


The law of small numbers is described in Daniel Kahneman’s book ‘Thinking, fast and slow‘ and is a condition that can be explained by statistical theory. It says that you are likely to draw a misleading conclusion if your sample is small.  


I’m no statistician, but a physicist who experienced a “statistical revelation” about a decade ago. Physics-based disciplines, such as meteorology, often approach a problem from a different angle to the statisticians, and there are often some gaps in the understanding and appreciation between the two communities.


A physicist would say that if we know one side of an equation, then we also know the other side. The statistician, on the other hand, would use data to prove there is an equation in the first place.


One of the key pillars of statistics is that we have a random sample that represents what we want to study. We have no such statistical samples for future climate outlooks, but we do have ensembles of simulations representing future projections.


We also have to keep in mind that regional climate behaves differently to global climate. There are pronounced stochastic variations on regional and decadal scales that may swamp the long-term trends due to greenhouse gases (Deser et al., 2012). These variations are subdued on a global scale since opposite variations over different regions tend to cancel each other.


CORDEX has in the past produced ensembles that can be considered as small, and Mezghani et al., (2019) demonstrated that the Euro-CORDEX ensemble is affected by the law of small numbers.

Even if you have a perfect global climate model and perfect downscaling, you risk getting misleading results with a small ensemble, thanks to the law of small numbers. The regional variations are non-deterministic due to the chaotic nature of the atmospheric circulation.


My take-home-message is that there is a need for sufficiently large ensembles of downscaled results. Furthermore, it is the number of different simulations with global climate models that is key since they provide boundary conditions for the downscaling.


Hence, there is a need for a strong and continued coordination between the downscaling groups so that more scientists contribute to building such ensembles.


Also, while CORDEX has been strong on regional climate modelling, the new RifS community needs additional new expertise. Perhaps a stronger presence of statisticians is a good thing. And while the downscaled results from large ensembles can provide a basis for a risk analysis, there is also another way to provide regional information for society: stress-testing.


  1. C. Deser, R. Knutti, S. Solomon, and A.S. Phillips, "Communication of the role of natural variability in future North American climate", Nature Climate Change, vol. 2, pp. 775-779, 2012.
  2. A. Mezghani, A. Dobler, R. Benestad, J.E. Haugen, K.M. Parding, M. Piniewski, and Z.W. Kundzewicz, "Subsampling Impact on the Climate Change Signal over Poland Based on Simulations from Statistical and Dynamical Downscaling", Journal of Applied Meteorology and Climatology, vol. 58, pp. 1061-1078, 2019.

Unforced Variations: Nov 2020

Filed under: — group @ 2 November 2020

This month’s open thread for climate science. As if there wasn’t enough going on, we have still more hurricanes in the Atlantic, temperature records tumbling despite La Niña, Arctic sea ice that doesn’t want to reform, bushfire season kicking off in the Southern Hemisphere while we are barely done with it in the North…

Welcome to the new normal, folks.

Unforced Variations: Oct 2020

Filed under: — group @ 1 October 2020

This month’s open thread.

New studies confirm weakening of the Gulf Stream circulation (AMOC)

Filed under: — stefan @ 17 September 2020

Many of the earlier predictions of climate research have now become reality. The world is getting warmer, sea levels are rising faster and faster, and more frequent heat waves, extreme rainfall, devastating wildfires and more severe tropical storms are affecting many millions of people. Now there is growing evidence that another climate forecast is already coming true: the Gulf Stream system in the Atlantic is apparently weakening, with consequences for Europe too.

More »

Unforced variations: Sep 2020

Filed under: — group @ 1 September 2020

This month’s open thread on climate science topics. Things to look for – Arctic sea ice minimum, boreal wildfires and the Atlantic hurricane season – you know, the usual…

Denial and Alarmism in the Near-Term Extinction and Collapse Debate

Guest article by Alastair McIntosh,  honorary professor in the College of Social Sciences at the University of Glasgow in Scotland. This is an excerpt from his new book, Riders on the Storm: The Climate Crisis and the Survival of Being

cover art for Riders on the StormMostly, we only know what we think we know about climate science because of the climate science. I have had many run-ins with denialists, contrarians or climate change dismissives as they are variously called. Over the past two years especially, concern has also moved to the other end of the spectrum, to alarmism. Both ends, while the latter has been more thinly tapered, can represent forms of denial. In this abridged adaptation I will start with denialism, but round on the more recent friendly fire on science that has emerged in alarmism.
More »

How to spot “alternative scientists”.

Filed under: — rasmus @ 12 August 2020

Recently, a so-called “white coat summit” gave me a sense of dejavu. It was held by a group that calls itself ‘America’s Frontline Doctors’ (AFD) that consisted of about a dozen people wearing white coats to the effect of achieving an appearance of being experts on medical matters.


The AFD apparently wanted to address a “massive disinformation campaign” (what irony) and counter the medical advice from real health experts. This move has a similar counterpart in climate science, where some individuals also have claimed to be experts and dismissed well-established scientific facts, eg. that emissions of CO2 from the use of fossil fuels results in global warming.


Climate science is not the only discipline where we see confusion sown by a small number of “renegades”. A few white-coated scholars have disputed the well-established danger of tobacco. We see similar attitudes among the “Intelligent Design” community and the so-called “anti-vaxxers”.


Statistically speaking, we should not be surprised by a few contrarians who have an exceptional opinion within a large scientific community. It is to be expected from a statistical point of view where there is a range of opinions, so there should be little reason to make a big deal out it.


On the other hand, there are some fascinating stories to be told. Sometimes there are individuals who can be described as “crackpots” and “quakesalvers” (e.g. a scholar believing in dowsing rods among the climate renegades and some within the AFD who talk about demons). Hollywood has even realized that some scientists may be mad, which has given us the familiar term “mad scientist”. But all “renegades” may of course not necessarily be mad.


Nevertheless, according to Snopes, the background of the individuals of the AFD is rather colourful. And there is nothing in the background provided about them that gave me any confidence in their judgement. On the contrary.


A sign that should trigger a big warning is that Snopes found it difficult to see who the AFD really are or where their conclusions really come from. The transparency is lacking and their story is murky. Especially so if the results have not been published through renowned peer-reviewed scientific journals. This is something we have seen time and again with climate change contrarians.


Any claim would be more convincing if colleagues independently are able to replicate the work and get the same results (without finding anything wrong with the process). This would require transparency and openness.


Another sign that should make you skeptical is if the claims have a dogmatic character. The AFD address is all dogma. This is also typical among the science deniers.


It’s also typical that the extreme fringes cannot falsify the established science and therefore move on to conspiracy theories. In the case of AFD, it is the alleged “massive disinformation campaign”.


Should we take such fringe views seriously? This type of “infodemics” seems to become a growing problem as described in a feature article in Physics World July 2020: ‘Fighting flat-Earth Theory’. The term “infodemic” reflects the fact that false information is just as contagious as an epidemic. Imposters dressed in white coats peddling false information can cause harm if people take them seriously.


The damage caused by erroneous information and conspiracy theories is discussed in the HBO documentary ‘After truth’, and the wildest claims can spread like a rampant disease as shown in that film.

We have witnessed how misinformation and lack of trust of true medical sciences have caused bad situations in some countries, while in others (eg. New Zealand, Canada, and some Nordic countries) the pandemic has been kept under control because the general public in general has followed the scientific health advice.


There is a common denominator when it comes to the AFD, anti-vaxxers, flat-earthers, “intelligent design”, chem-trail evangelists and those dismissing climate science. I think it may be useful to join forces within the broader scientific community to help the general public understand the real issues. This effort should also be on more general terms. People have a right to reliable and truthful information. Everybody should understand that anyone who spreads bullshit or lies also shows you a great deal of disrespect. The same goes for platforms spreading disinformation.


So what can we do to make people understand how science works and enhance the general science literacy? Is it better to teach people how to spot these “alternative scientists” (the term is inspired by “alternative facts”), conspiracy theories, and falsehoods, if we show a range of examples from different disciplines? We can probably learn from each others. There seems to be a lesson to be learned from the pandemic.

Unforced Variations: Aug 2020

Filed under: — group @ 1 August 2020

This month’s open thread for climate science issues. People might want to keep an eye on the Arctic sea ice

Climate Sensitivity: A new assessment

Filed under: — gavin @ 22 July 2020

Not small enough to ignore, nor big enough to despair.

There is a new review paper on climate sensitivity published today (Sherwood et al., 2020 (preprint) that is the most thorough and coherent picture of what we can infer about the sensitivity of climate to increasing CO2. The paper is exhaustive (and exhausting – coming in at 166 preprint pages!) and concludes that equilibrium climate sensitivity is likely between 2.3 and 4.5 K, and very likely to be between 2.0 and 5.7 K.

More »


  1. S.C. Sherwood, M.J. Webb, J.D. Annan, K.C. Armour, P.M. Forster, J.C. Hargreaves, G. Hegerl, S.A. Klein, K.D. Marvel, E.J. Rohling, M. Watanabe, T. Andrews, P. Braconnot, C.S. Bretherton, G.L. Foster, Z. Hausfather, A.S. Heydt, R. Knutti, T. Mauritsen, J.R. Norris, C. Proistosescu, M. Rugenstein, G.A. Schmidt, K.B. Tokarska, and M.D. Zelinka, "An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence", Reviews of Geophysics, vol. 58, 2020.