RealClimate logo


Unforced variations: September 2014

Filed under: — group @ 2 September 2014

This month’s open thread. People could waste time rebunking predictable cherry-picked claims about the upcoming Arctic sea ice minimum, or perhaps discuss a selection of 10 climate change controversies from ICSU… Anything! (except mitigation).

IPCC attribution statements redux: A response to Judith Curry

Filed under: — gavin @ 27 August 2014

I have written a number of times about the procedure used to attribute recent climate change (here in 2010, in 2012 (about the AR4 statement), and again in 2013 after AR5 was released). For people who want a summary of what the attribution problem is, how we think about the human contributions and why the IPCC reaches the conclusions it does, read those posts instead of this one.

The bottom line is that multiple studies indicate with very strong confidence that human activity is the dominant component in the warming of the last 50 to 60 years, and that our best estimates are that pretty much all of the rise is anthropogenic.



The probability density function for the fraction of warming attributable to human activity (derived from Fig. 10.5 in IPCC AR5). The bulk of the probability is far to the right of the “50%” line, and the peak is around 110%.

If you are still here, I should be clear that this post is focused on a specific claim Judith Curry has recently blogged about supporting a “50-50″ attribution (i.e. that trends since the middle of the 20th Century are 50% human-caused, and 50% natural, a position that would center her pdf at 0.5 in the figure above). She also commented about her puzzlement about why other scientists don’t agree with her. Reading over her arguments in detail, I find very little to recommend them, and perhaps the reasoning for this will be interesting for readers. So, here follows a line-by-line commentary on her recent post. Please excuse the length.
More »

How much methane came out of that hole in Siberia?

Filed under: — david @ 13 August 2014

Siberia has explosion holes in it that smell like methane, and there are newly found bubbles of methane in the Arctic Ocean. As a result, journalists are contacting me assuming that the Arctic Methane Apocalypse has begun. However, as a climate scientist I remain much more concerned about the fossil fuel industry than I am about Arctic methane. Short answer: It would take about 20,000,000 such eruptions within a few years to generate the standard Arctic Methane Apocalypse that people have been talking about. Here’s where that statement comes from:
More »

Unforced variations: Aug 2014

Filed under: — group @ 5 August 2014

This month’s open thread. Keeping track of the Arctic sea ice minimum is interesting but there should be plenty of other climate science topics to discuss (if people can get past the hype about the Ebola outbreak or imaginary claims about anomalous thrusting). As with last month, pleas no discussion of mitigation strategies – it unfortunately does not bring out the best in the commentariat.

Rossby waves and surface weather extremes

Filed under: — stefan @ 10 July 2014

A new study by Screen and Simmonds demonstrates the statistical connection between high-amplitude planetary waves in the atmosphere and extreme weather events on the ground.

Guest post by Dim Coumou

There has been an ongoing debate, both in and outside the scientific community, whether rapid climate change in the Arctic might affect circulation patterns in the mid-latitudes, and thereby possibly the frequency or intensity of extreme weather events. The Arctic has been warming much faster than the rest of the globe (about twice the rate), associated with a rapid decline in sea-ice extent. If parts of the world warm faster than others then of course gradients in the horizontal temperature distribution will change – in this case the equator-to-pole gradient – which then could affect large scale wind patterns.

Several dynamical mechanisms for this have been proposed recently. Francis and Vavrus (GRL 2012) argued that a reduction of the north-south temperature gradient would cause weaker zonal winds (winds blowing west to east) and therefore a slower eastward propagation of Rossby waves. A change in Rossby wave propagation has not yet been detected (Barnes 2013) but this does not mean that it will not change in the future. Slowly-traveling waves (or quasi-stationary waves) would lead to more persistent and therefore more extreme weather. Petoukhov et al (2013) actually showed that several recent high-impact extremes, both heat waves and flooding events, were associated with high-amplitude quasi-stationary waves. More »

References

  1. J.A. Francis, and S.J. Vavrus, "Evidence linking Arctic amplification to extreme weather in mid-latitudes", Geophysical Research Letters, vol. 39, pp. n/a-n/a, 2012. http://dx.doi.org/10.1029/2012GL051000
  2. E.A. Barnes, "Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes", Geophysical Research Letters, vol. 40, pp. 4734-4739, 2013. http://dx.doi.org/10.1002/grl.50880
  3. V. Petoukhov, S. Rahmstorf, S. Petri, and H.J. Schellnhuber, "Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes", Proceedings of the National Academy of Sciences, vol. 110, pp. 5336-5341, 2013. http://dx.doi.org/10.1073/pnas.1222000110

Switch to our mobile site