• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Archives for group

group

Climate Change videos: Part I

9 Oct 2012 by group

The US National Research Council has been doing a lot recently to expand background knowledge of the climate system and of climate change. In tandem with a new report discussing strategies for advancing climate modeling, they have put up a an introductory web site on climate models (including some interviews with some actual climate modelers).

More comprehensively, they have helped put together a series of videos discussing everything from the definition of climate to attribution of climate changes and future projections. The series is in seven parts, viewable here. There are additional resources here.

We thought it would be interesting to have a separate post on each of the seven videos so that discussions on the videos themselves, or the topics covered (or not) could be more focused. So, with no further ado, here is part I: “What is Climate?”

Filed Under: Climate Science, Communicating Climate

Unforced variations: Oct 2012

1 Oct 2012 by group

This month’s open thread. Try to keep it at least vaguely focused on climate science…!

Filed Under: Climate Science, Open thread

Unforced variations: Sep 2012

5 Sep 2012 by group

Open thread – a little late because of the holiday. But everyone can get back to work now!

Filed Under: Climate Science, Open thread

Unforced Varations: Aug 2012

2 Aug 2012 by group

Once more with feeling…

Filed Under: Climate Science, Open thread

My oh Miocene!

11 Jul 2012 by group

Guest commentary by Sarah Feakins

Our recent study in Nature Geoscience reconstructed conditions at the Antarctic coast during a warm period of Earth’s history. Today the Ross Sea has an ice shelf and the continent is ice covered; but we found the Antarctic coast was covered with tundra vegetation for some periods between 20 million and 15.5 million years ago. These findings are based on the isotopic composition of plant leaf waxes in marine sediments.

That temperatures were warm at that time was not a huge surprise; surprising, was how much warmer things were – up to 11ºC (20ºF) warmer at the Antarctic coast! We expected to see polar amplification, i.e. greater changes towards the poles as the planet warms. This study found those coastal temperatures to be as warm as 7ºC or 45ºF during the summer months. This is a surprise because conventional wisdom has tended to think of Antarctica being getting progressively colder since ice sheets first appeared on Antarctica 34 million years ago (but see Ruddiman (2010) for a good discussion of some of the puzzles).
[Read more…] about My oh Miocene!

References

  1. S.J. Feakins, S. Warny, and J. Lee, "Hydrologic cycling over Antarctica during the middle Miocene warming", Nature Geoscience, vol. 5, pp. 557-560, 2012. http://dx.doi.org/10.1038/NGEO1498
  2. W.F. Ruddiman, "A Paleoclimatic Enigma?", Science, vol. 328, pp. 838-839, 2010. http://dx.doi.org/10.1126/science.1188292

Filed Under: Arctic and Antarctic, Climate modelling, Climate Science, Oceans, Paleoclimate

Unforced Variations: July 2012

3 Jul 2012 by group

Have at it.

Filed Under: Climate Science, Open thread

Unforced Variations; June 2012

1 Jun 2012 by group

This month’s open thread…

Filed Under: Climate Science, Open thread

Plugging the leaks

17 May 2012 by group

Guest commentary by Beate Liepert, NWRA

Clouds and water vapor accounts for only a tiny fraction of all water on Earth, but in spite of it, this moisture in the atmosphere is crucially important to replenishing drinking water reservoirs, crop yields, distribution of vegetation zones, and so on. This is the case because in the atmosphere, clouds and water vapor, transports a vast amount of water from oceans to land, where it falls out as precipitation. Scientists generally agree that rising temperatures in the coming decades will affect this cycling of water. And most climate models successfully simulate a global intensification of rainfall. However, physical models often disagree with observations and amongst themselves on the amount of the intensification, and global distribution of moisture that defines dry and wet regions.
[Read more…] about Plugging the leaks

Filed Under: Climate impacts, Climate modelling, Climate Science

Unforced variations: May 2012

1 May 2012 by group

New open thread for this month: misrepresentations of wind farm impacts on local climate? Clouds and contrarians? or whatever…

Filed Under: Climate Science, Open thread

Unlocking the secrets to ending an Ice Age

28 Apr 2012 by group

Guest Commentary by Chris Colose, SUNY Albany

It has long been known that characteristics of the Earth’s orbit (its eccentricity, the degree to which it is tilted, and its “wobble”) are slightly altered on timescales of tens to hundreds of thousands of years. Such variations, collectively known as Milankovitch cycles, conspire to pace the timing of glacial-to-interglacial variations.

Despite the immense explanatory power that this hypothesis has provided, some big questions still remain. For one, the relative roles of eccentricity, obliquity, and precession in controlling glacial onsets/terminations are still debated. While the local, seasonal climate forcing by the Milankovitch cycles is large (of the order 30 W/m2), the net forcing provided by Milankovitch is close to zero in the global mean, requiring other radiative terms (like albedo or greenhouse gas anomalies) to force global-mean temperature change.

The last deglaciation occurred as a long process between peak glacial conditions (from ~26-20,000 years ago) to the Holocene (~10,000 years ago). Explaining this evolution is not trivial. Variations in the orbit cause opposite changes in the intensity of solar radiation during the summer between the Northern and Southern hemisphere, yet ice age terminations seem synchronous between hemispheres. This could be explained by the role of the greenhouse gas CO2, which varies in abundance in the atmosphere in sync with the glacial cycles and thus acts as a “globaliser” of glacial cycles, as it is well-mixed throughout the atmosphere. However, if CO2 plays this role it is surprising that climatic proxies indicate that Antarctica seems to have warmed prior to the Northern Hemisphere, yet glacial cycles follow in phase with Northern insolation (“INcoming SOLar radiATION”) patterns, raising questions as to what communication mechanism links the hemispheres.

There have been multiple hypotheses to explain this apparent paradox. One is that the length of the austral summer co-varies with boreal summer intensity, such that local insolation forcings could result in synchronous deglaciations in each hemisphere (Huybers and Denton, 2008). A related idea is that austral spring insolation co-varies with summer duration, and could have forced sea ice retreat in the Southern Ocean and greenhouse gas feedbacks (e.g., Stott et al., 2007).

Based on transient climate model simulations of glacial-interglacial transitions (rather than “snapshots” of different modeled climate states), Ganopolski and Roche (2009) proposed that in addition to CO2, changes in ocean heat transport provide a critical link between northern and southern hemispheres, able to explain the apparent lag of CO2 behind Antarctic temperature. Recently, an elaborate data analysis published in Nature by Shakun et al., 2012 (pdf) has provided strong support for these model predictions. Shakun et al. attempt to interrogate the spatial and temporal patterns associated with the last deglaciation; in doing so, they analyze global-scale patterns (not just records from Antarctica). This is a formidable task, given the need to synchronize many marine, terrestrial, and ice core records.
[Read more…] about Unlocking the secrets to ending an Ice Age

References

  1. P. Huybers, and G. Denton, "Antarctic temperature at orbital timescales controlled by local summer duration", Nature Geoscience, vol. 1, pp. 787-792, 2008. http://dx.doi.org/10.1038/ngeo311
  2. L. Stott, A. Timmermann, and R. Thunell, "Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO 2 Rise and Tropical Warming", Science, vol. 318, pp. 435-438, 2007. http://dx.doi.org/10.1126/science.1143791
  3. A. Ganopolski, and D.M. Roche, "On the nature of lead–lag relationships during glacial–interglacial climate transitions", Quaternary Science Reviews, vol. 28, pp. 3361-3378, 2009. http://dx.doi.org/10.1016/j.quascirev.2009.09.019
  4. J.D. Shakun, P.U. Clark, F. He, S.A. Marcott, A.C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner, and E. Bard, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation", Nature, vol. 484, pp. 49-54, 2012. http://dx.doi.org/10.1038/nature10915

Filed Under: Arctic and Antarctic, Carbon cycle, Climate Science, Paleoclimate

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Interim pages omitted …
  • Page 53
  • Go to Next Page »

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Unforced variations: July 2025
  • Unforced variations: Jun 2025
  • Predicted Arctic sea ice trends over time
  • The most recent climate status
  • Unforced variations: May 2025
  • Unforced Variations: Apr 2025

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • Pedro Prieto on Unforced variations: July 2025
  • Nigelj on Unforced variations: July 2025
  • Scott Nudds on Unforced variations: July 2025
  • Susan Anderson on Unforced variations: July 2025
  • William on Unforced variations: July 2025
  • jgnfld on Unforced variations: July 2025
  • Piotr on Unforced variations: July 2025
  • William on Unforced variations: July 2025
  • William on Unforced variations: July 2025
  • Paul Pukite (@whut) on Unforced variations: July 2025
  • William on Unforced variations: July 2025
  • William on Unforced variations: July 2025
  • Scott Nudds on Unforced variations: July 2025
  • Scott Nudds on Unforced variations: July 2025
  • William on Predicted Arctic sea ice trends over time
  • Piotr on Predicted Arctic sea ice trends over time
  • CherylJosie on Unforced variations: July 2025
  • William on Predicted Arctic sea ice trends over time
  • Tomáš Kalisz on Unforced variations: July 2025
  • Piotr on Unforced variations: July 2025

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,368 posts

11 pages

244,222 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.