RealClimate logo

Non-condensable Cynicism in Santa Fe

Filed under: — mike @ 17 January 2017

Guest Post by Mark Boslough

The Fourth Santa Fe Conference on Global & Regional Climate Change will be held on Feb 5-10, 2017. It is the fourth in a series organized and chaired by Petr Chylek of Los Alamos National Laboratory (LANL) and takes place intervals of 5 years or thereabouts. It is sponsored this year by LANL’s Center for Earth and Space Science and co-sponsored by the American Meteorological Society. I attended the Third in the series, which was held the week of Oct 31, 2011. I reported on it here in my essay “Climate cynicism at the Santa Fe conference”.

In that report, I described my experiences and interactions with other attendees, whose opinions and scientific competence spanned the entire spectrum of possibility. Christopher Monckton represented one extreme end-member, with no scientific credibility, total denial of facts, zero acknowledgment of uncertainty in his position, and complete belief in a global conspiracy to promote a global warming fraud. At the opposite end were respected professional climate scientists at the top of their fields, such as Richard Peltier and Gerald North. Others, such as Fred Singer and Bill Gray, occupied different parts of the multi-dimensional phase space, having credentials but also having embraced denial—each for their own reasons that probably didn’t intersect.

2011 conference participants share a “Christmas in the trenches” moment on the Santa Fe plaza (author on the upper right; Monckton to his immediate left, with Singer just below)

For me, the Third Conference represented an opportunity to talk to people who held contrary opinions and who promoted factually incorrect information for reasons I did not understand. My main motivation for attending was to engage in dialogue with the contrarians and deniers, to try to understand them, and to try to get them to understand me. I came away on good terms with some (Bill Gray and I bonded over our common connection to Colorado State University, where I was an undergraduate physics student in the 1970s) but not so much with others.

I was ambitious and submitted four abstracts. I and my colleagues were pursuing uncertainty quantification for climate change in collaboration with other DOE labs. I had been collaborating on several approaches to it, including betting markets, expert elicitation, and statistical surrogate models, so I submitted an abstract for each of those methods. I had also been working with Lloyd Keigwin, a senior scientist and oceanographer at Woods Hole Oceanographic Institution and another top-of-his-field researcher. We submitted an abstract together about his paleotemperature reconstruction of Sargasso Sea surface temperature, which is probably the most widely reproduced paleoclimate time series other than the Mann et al. “Hockey Stick” graph. I had updated it with modern SST measurements, and in our abstract we pointed out that it had been misused by contrarians who had removed some of the data, replotted it, and mislabeled it to falsely claim that it was a global temperature record showing a cooling trend. The graph continues to make appearances. On March 23, 2000, ExxonMobil took out an advertisement in the New York Times claiming that global warming was “Unsettled Science”. The ad was illustrated with a doctored version of Lloyd’s graph (the inconvenient modern temperature data showing a warming trend had been removed). This drawing was very similar to one that had been generated by climate denier Art Robinson and his son for a Wall Street Journal editorial a couple months earlier. It wasn’t long before other distorted versions started showing up elsewhere, such as the Albuquerque Journal opinion page. The 2000 ExxonMobil version was just entered into the Congressional Record last week by Senator Tim Kaine during the Tillerson confirmation hearings.

Original Keigwin (1996) graph as it appeared in the journal Science.

Doctored Version of Keigwin (1996) graph that appeared in Robinson et al (1998)

Doctored version of Keigwin (1996) graph used in ExxonMobil advertisement.

In 2011, my abstracts on betting, expert elicitation, and statistical models were all accepted, and I presented them. But the abstract that Lloyd and I submitted was unilaterally rejected by Chylek who said, “This Conference is not a suitable forum for [the] type of presentations described in [the] submitted abstract. We would accept a paper that spoke to the science, the measurements, the interpretation, but not simply an attempted refutation of someone else’s assertions (especially when made in unpublished reports and blog site).” The unpublished report he spoke of was the NIPCC/Heartland Institute report, which Fred Singer was there to discuss. After the conference, I spoke to one of the co-chairs about the reasons for the rejection. He said that he hadn’t seen it and did not agree with the reasons for the rejection. He encouraged Lloyd and me to re-submit it again for the 4th conference. So we did. Lloyd sent the following slightly-revised version on January 4.

Misrepresentations of Sargasso Sea Temperatures by Global Warming Doubters

Lloyd Keigwin (Woods Hole Oceanographic Institution) and Mark Boslough (Sandia National Laboratories)

Keigwin (Science 274:1504–1508, 1996) reconstructed the SST record in the northern Sargasso Sea to document natural climate variability in recent millennia. The annual average SST proxy used δ18O in planktonic foraminifera in a radiocarbon-dated 1990 Bermuda Rise box core. Keigwin’s Fig. 4B (K4B) shows a 50-year-averaged time series along with four decades of SST measurements from Station S near Bermuda, demonstrating that at the time of publication, the Sargasso Sea was at its warmest in more than 400 years, and well above the most recent box-core temperature. Taken together, Station S and paleotemperatures suggest there was an acceleration of warming in the 20th century, though this was not an explicit conclusion of the paper. Keigwin concluded that anthropogenic warming may be superposed on a natural warming trend.

In a paper circulated with the anti-Kyoto “Oregon Petition,” Robinson et al. (“Environmental Effects of Increased Atmospheric Carbon Dioxide,” 1998) reproduced K4B but (1) omitted Station S data, (2) incorrectly stated that the time series ended in 1975, (3) conflated Sargasso Sea data with global temperature, and (4) falsely claimed that Keigwin showed global temperatures “are still a little below the average for the past 3,000 years.” Slight variations of Robinson et al. (1998) have been repeatedly published with different author rotations. Various mislabeled, improperly-drawn, and distorted versions of K4B have appeared in the Wall Street Journal, in weblogs, and even as an editorial cartoon—all supporting baseless claims that current temperatures are lower than the long term mean, and traceable to Robinson’s misrepresentation with Station S data removed. In 2007, Robinson added a fictitious 2006 temperature that is significantly lower than the measured data. This doctored version of K4B with fabricated data was reprinted in a 2008 Heartland Institute advocacy report, “Nature, Not Human Activity, Rules the Climate.”

On Jan. 9, Lloyd and I got a terse rejection from Chylek: “Not accepted. The committee finding was that the abstract did not indicate that the presentation would provide additional science that would be appropriate for the conference.”

I had also submitted an abstract with Stephen Lewandowsky and James Risbey called “Bets reveal people’s opinions on climate change and illustrate the statistics of climate change,” and a companion poster entitled “Forty years of expert opinion on global warming: 1977-2017” in which we proposed to survey the conference attendees:

Forecasts of anthropogenic global warming in the 1970s (e.g. Broecker, 1975, Charney et al., 1979) were taken seriously by policy makers. At that time, climate change was already broadly recognized within the US defense and intelligence establishments as a threat to national and global security, particularly due to climate’s effect on food production. There was uncertainty about the degree of global warming, and media-hyped speculation about global cooling confused the public. Because science-informed policy decisions needed to be made in the face of this uncertainty, the US Department of Defense funded a study in 1977 by National Defense University (NDU) called “Climate Change to the Year 2000” in which a panel of experts was surveyed. Contrary to the recent mythology of a global cooling scare in the 1970s, the NDU report (published in 1978) concluded that, “Collectively, the respondents tended to anticipate a slight global warming rather than a cooling”.

Despite the rapid global warming since 1977, this subject remains politically contentious. We propose to use our poster presentation to survey the attendees of the Fourth Santa Fe Conference on Global and Regional Climate Change and to determine how expert opinion has changed in the last 40 years.

I had attempted a similar project at the 3rd conference with my poster “Comparison of Climate Forecasts: Expert Opinions vs. Prediction Markets” in which my abstract proposed the following: “As an experiment, we will ask participants to go on the record with estimates of probability that the global temperature anomaly for calendar year 2012 will be equal to or greater than x, where x ranges in increments of 0.05 °C from 0.30 to 1.10 °C (relative to the 1951-1980 base period, and published by NASA GISS).” I included a table for participants to fill in, and even printed extra sheets to tack up on the board with my poster so I could compile them and report them later.

This idea was a spinoff of work I had presented at an unclassified session of the 2006 International Conference on Intelligence Analysis on my research in support of the US intelligence community for which a broad spectrum of opinion must be used to generate an actionable consensus with incomplete or conflicting information. That was certainly the case in Santa Fe, where there were individuals (e.g. Don Easterbrook) who were going on record with predictions of global cooling. By the last day of the conference, several individuals had filled in the table with their probabilistic predictions and I decided to leave my poster up until the end of the day, which was how long they could be displayed according to the conference program. I wanted to plug it during my oral presentation on prediction markets so that I could get more participation. Unfortunately when I returned to the display room, my poster had been removed. Hotel employees did not know where it was, and the diverse probability estimates were lost.

This year I would be more careful, as announced in my abstract. But the committee would have no part of it. On Jan 10 I got my rejection letter:

I regret to inform you that we have decided to decline this submission.

Based on our consideration of the abstract and plan, it is our view that designing a survey that accurately elicits expert opinion requires special expertise as the answers can depend on how the questions are asked. No indication of such expertise was presented in the abstract itself or found based on examination of your publication record.

A further concern dealt with the proposed comparison with opinion elicited at a different time from a different community by a different method that might allow one to “determine how expert opinion has changed in the last 40 years.”

Concern was raised also over how one might legitimately transform the results of such a poll into “into probabilistic global warming projections.”

Although we cannot accept this poster, we certainly look forward to your active participation in the Conference.

Of the hundreds of abstracts I’ve submitted, this is the only conference that’s ever rejected one. As a frequent session convener and program committee chair myself, I am accustomed to providing poster space for abstracts that I might question, misunderstand, or disagree with. It has never occurred to me to look at the publication list of a poster presenter, But if I were to do that, I would be more thorough and look other information, including their coauthors’ publication lists and CVs as well. In this case, the committee might have discovered more than a few papers by one of them on the subject, such as Risbey and Kandlikar (2002) “Expert Assessment of Uncertainties in Detection and Attribution of Climate Change” in the Bulletin of the American Meteorological Society, or that Prof. Risbey was a faculty member in Granger Morgan’s Engineering and Public Policy department at CMU for five years, a place awash in expert elicitation of climate (I sent my abstract to Prof. Morgan–who I know from my AGU uncertainty quantification days–for his opinion before submitting it to the conference).

At the very least, I would look at the previous work cited in the abstract. The committee would not have been puzzled by how to transform survey data into probabilistic projections if they had done so. They would have learned that the 1978 NDU study we cited had already established the methodology we were proposing to use. The NDU “Task I” was “To define and estimate the likelihood of changes in climate during the next 25 years…” using ten survey questions described in Chapter One (Methodology). The first survey question was on average global temperature. So the legitimacy of the method we were planning to use was established 40 years ago.

I concluded after the 3rd Santa Fe conference that cynicism was the only attribute that was shared by the minority of attendees who were deniers, contrarians, publicity-seekers, enablers, or provocateurs. I now think that cynicism has something in common with greenhouse gases. Cynicism begets cynicism, to the detriment of society. There are natural-born cynics, and if they turn the rest of us into cynics then we are their amplifiers, just like water vapor is an amplifier of carbon dioxide’s greenhouse effect. We become part of a cynical feedback loop that generates distrust in science and the scientific method. I refuse to let that happen. I might have gotten a little steamed by an unfair or inappropriate rejection, but I’ve cooled off and my induced cynicism has condensed now. I am not going to assume that everyone is a cynic just because of a couple of misguided and misinformed decisions.

As President Obama said in his farewell address, “If you’re tired of arguing with strangers on the Internet, try talking with one of them in real life.” So if you are attending the Santa Fe conference, I would like to meet with you. If you are flying into Albuquerque, where I live, drop me a line. Or meet me for a drink or dinner in Santa Fe. I can show you why Lloyd’s research really does provide additional science that is relevant to the conference. I can try to convince you that prediction markets are indeed superior to expert elicitation in their ability to forecast climate change. Maybe I can even talk you into going on record with your own probabilistic global warming forecast!

Boomerangs versus Javelins: The Impact of Polarization on Climate Change Communication

Filed under: — mike @ 7 June 2016

Guest commentary by Jack Zhou, Nicholas School of the Environment, Duke University

For advocates of climate change action, communication on the issue has often meant “finding the right message” that will spur their audience to action and convince skeptics to change their minds. This is the notion that simply connecting climate change to the right issue domains or symbols will cut through the political gridlock on the issue. The difficulty then lies with finding these magic bullet messages, figuring out if they talk about climate change in the context of with national security or polar bears or passing down a clean environment to future generations.

On highly polarized issues like climate change, however, communicating across the aisle may be more difficult than simply finding the right message. Here, the worst case scenario is not simply a message failing to land and sending you back to the drawing board. Instead, any message that your audience disagrees with may polarize that audience even further in their skepticism, leaving you in a worse position than you began. As climate change has become an increasingly partisan issue in American politics, this means that convincing Republicans to reject the party line of climate skepticism may be easier said than done.
More »

The Early Anthropocene Hypothesis: An Update

Filed under: — mike @ 15 March 2016

Guest post from Bill Ruddiman, University of Virginia

For over a decade, paleoclimate scientists have argued whether the warmth of the last several thousand years was natural or anthropogenic. This brief comment updates that debate, also discussed earlier at RC: Debate over the Early Anthropogenic Hypothesis (2005) and An Emerging View on Early Land Use (2011). The graph below outlines the evolution of that debate through 4 phases.


In phase 1 (the 1900’s), scientists viewed Holocene climate change as driven only by natural causes until the industrial era began. But by the late 1990’s, ice core data revealed late Holocene GHG rises unlike trends in previous interglaciations. Two hypotheses proposed natural causes for the CO2 increase: carbonate compensation (Broecker et al., 1999, 2001) and coral-reef construction (Ridgewell et al., 2003).

In phase 2 (2001-2003), the early anthropogenic hypothesis (EAH) challenged natural explanations for the anomalous late Holocene CO2 (and CH4) rises, attributing them to the spread of early agriculture thousands of years ago.

In phase 3 (2004-2008), several arguments were advanced against the EAH:
* too few people lived millennia ago to have had a significant influence on land clearance, GHG emissions and climate;
* a (proposed) interglacial stage 11 analog for the Holocene suggested that thousands of years of natural warmth still remain in the current interglaciation;
* the weak decrease in ice core δ13CO2 during the last 7000 years did not permit extensive deforestation which would have released abundant 12C -rich carbon.
Papers by myself, my co-authors at Wisconsin, and others during phase 3 rebutted some of these criticisms, but community opinion remained divided.

Phase 4 (2009-2016) has seen a major shift in viewpoint of published papers: 30 papers favor aspects of the EAH, 6 papers oppose it, and 5 are in the middle. Most of the phase 4 papers that oppose the hypothesis or are ‘in the middle’ are based on modeling studies. Many of the 30 supporting papers are broad-scale compilations of archaeological and paleoecological evidence:
* The average GHG trends from 7 previous interglaciations show CO2 and CH4 decreases, in contrast to the late Holocene increases;
* Interglacial stage 19, the closest Holocene analog, shows decreases in CH4 and CO2, and the CO2 decrease closely matches the 2003 EAH prediction;
* CH4 emissions from Asian rice paddies account for 70% of the observed CH4 rise from 5000 to 1000 years ago
* historical data show that early per-capita land use was at least 4 times larger than assumed in several phase-3 land use simulations
* a recent land use simulation based on historical evidence accounts for more than half the CO2 anomaly originally proposed in the EAH;
* pollen evidence shows nearly complete deforestation in north-central Europe before the industrial era began;
* δD and δ18O trends show anomalous late Holocene warmth compared to cooling trends in prior interglaciations, in agreement with A-OGCM simulations of the warming effect of the anthropogenic CO2 and CH4 trends.

Anyone seeking more detail on this issue should contact for pdf copies of the recent 2016 Ruddiman et al. paper in Reviews of Geophysics and an invited paper just submitted to Oxford University Press that summarizes the history of this debate, with full references to the papers shown in the table.

How Likely Is The Observed Recent Warmth?

Filed under: — mike @ 25 January 2016

With the official numbers now in 2015 is, by a substantial margin, the new record-holder, the warmest year in recorded history for both the globe and the Northern Hemisphere. The title was sadly short-lived for previous record-holder 2014. And 2016 could be yet warmer if the current global warmth persists through the year.

One might well wonder: just how likely is it that we would be seeing these sort of streaks of record-breaking temperatures if not for human-caused warming of the planet?

Precisely that question was posed by several media organizations a year ago, in the wake of the then-record 2014 temperatures. Various press accounts reported odds anywhere from 1-in-27 million to 1-in-650 million that the observed run of global temperature records (9 of the 10 warmest years and 13 of the 15 warmest years each having had occurred since 2000) might have resulted from chance alone, i.e. without any assistance from human-caused global warming.

My colleagues and I suspected the odds quoted were way too slim. The problem is that each year was treated as though it were statistically independent of neighboring years (i.e. that each year is uncorrelated with the year before it or after it), but that’s just not true. Temperatures don’t vary erratically from one year to the next. Natural variations in temperature wax and wane over a period of several years. More »

An Online University Course on the Science of Climate Science Denial

Filed under: — mike @ 22 April 2015

Guest post from John Cook, University of Queensland

For many years, RealClimate has been educating the public about climate science. The value of climate scientists patiently explaining the science and rebutting misinformation directly with the public cannot be overestimated. When I began investigating this issue, my initial searches led me here, which was invaluable in increasing my understanding of our climate and making sense of misinformation. RealClimate has inspired and empowered a host of climate communicators such as myself to step forward and help make climate science more accessible to the general public.

To further the work of educating the public, and empowering people to communicate the realities of climate change, the Skeptical Science team has collaborated with The University of Queensland to develop a MOOC, Making Sense of Climate Science Denial. MOOC stands for Massive (we’ve already had thousands of students sign up from over 130 countries) Open (available for free to everyone) Online (web-based, no software required) Course.

The course examines the science of climate science denial. Why do a small but vocal minority reject the scientific evidence for climate change? What techniques do they use to cast doubt on the science? And we examine the all-important question – based on scientific research, how should we respond to science denial?

Several strands of research in cognitive psychology, educational research and a branch of psychology called “inoculation theory” all point the way to neutralising the influence of science denial. The approach is two-fold: communicate the science but also explain how that science can be distorted.

So our course looks at the most common climate myths you’re likely to encounter online or in the media. We examine myths casting doubt on the reality of global warming. We explore the many human fingerprints on climate change. We look at the messages from past climate change and what climate models tell us about the future. And we look at how climate change is impacting every part of society and the environment. As we examine myths touching on all these parts of climate science, we shine the spotlight on the fallacies and techniques used to distort the science.


As well as our short video lectures debunking climate myths, we also interviewed many of the world’s leading scientists. I had the privilege to speak to Ben Santer, Katharine Hayhoe, Richard Alley, Phil Jones, Naomi Oreskes and let’s not forget my long, fascinating conversation with Michael Mann. I was also lucky enough to interview Sir David Attenborough at the Great Barrier Reef. We spoke to both climate scientists and social scientists who study the psychology of climate science denial. Some of the most powerful moments from those interviews came when the scientists described the attacks they’d personally experienced because of their climate research:

Our MOOC starts next Tuesday, April 28. It’s a free online course hosted by the not-for-profit edX (founded by Harvard University & MIT). It runs for 7 weeks, requiring 1 to 2 hours per week. You can enroll at

Switch to our mobile site