RealClimate logo

Technical Note: Sorry for the recent unanticipated down-time, we had to perform some necessary updates. Please let us know if you have any problems.

The wisdom of Solomon

Filed under: — gavin @ 29 January 2010

A quick post for commentary on the new Solomon et al paper in Science express. We’ll try and get around to discussing this over the weekend, but in the meantime I’ve moved some comments over. There is some commentary on this at DotEarth, and some media reports on the story – some good, some not so good. It seems like a topic that is ripe for confusion, and so here are a few quick clarifications that are worth making.

First of all, this is a paper about internal variability of the climate system in the last decade, not on additional factors that drive climate. Second, this is a discussion about stratospheric water vapour (10 to 15 km above the surface), not water vapour in general. Stratospheric water vapour comes from two sources – the uplift of tropospheric water through the very cold tropical tropopause (both as vapour and as condensate), and the oxidation of methane in the upper stratosphere (CH4+2O2 –> CO2 + 2H2O NB: this is just a schematic, the actual chemical pathways are more complicated). There isn’t very much of it (between 3 and 6 ppmv), and so small changes (~0.5 ppmv) are noticeable.

The decreases seen in this study are in the lower stratosphere and are likely dominated by a change in the flux of water through the tropopause. A change in stratospheric water vapour because of the increase in methane over the industrial period would be a forcing of the climate (and is one of the indirect effects of methane we discussed last year), but a change in the tropopause flux is a response to other factors in the climate system. These might include El Nino/La Nina events, increases in Asian aerosols, or solar impacts on near-tropopause ozone – but this is not addressed in the paper and will take a little more work to figure out.

Update: This last paragraph was probably not as clear as it should be. If the lower stratospheric water vapour (LSWV) is relaxing back to some norm after the 1997/1998 El Nino, then what we are seeing would be internal variability in the system which might have some implications for feedbacks to increasing GHGs, and my estimate of that would be that this would be an amplifying feedback (warmer SSTs leading to more LSWV). If we are seeing changes to the tropopause temperatures as an indirect impact from increased Asian aerosol emissions or solar-driven ozone changes, then this might be better thought of as impacting the efficacy of those forcings rather than implying some sensitivity change.

The study includes an estimate of the effect of the observed stratospheric water decadal decrease by calculating the radiation flux with and without the change, and comparing this to the increase in CO2 forcing over the same period. This implicitly assumes that the change can be regarded as a forcing. However, whether that is an appropriate calculation or not needs some careful consideration. Finally, no-one has yet looked at whether climate models (which have plenty of decadal variability too) have phenomena that resemble these observations that might provide some insight into the causes.

The IPCC is not infallible (shock!)

Filed under: — group @ 19 January 2010 - (Italian)

Like all human endeavours, the IPCC is not perfect. Despite the enormous efforts devoted to producing its reports with the multiple levels of peer review, some errors will sneak through. Most of these will be minor and inconsequential, but sometimes they might be more substantive. As many people are aware (and as John Nieslen-Gammon outlined in a post last month and Rick Piltz goes over today), there is a statement in the second volume of the IPCC (WG2), concerning the rate at which Himalayan glaciers are receding that is not correct and not properly referenced.

More »

2009 temperatures by Jim Hansen

Filed under: — group @ 17 January 2010 - (Français)

This is Hansen et al’s end of year summary for 2009 (with a couple of minor edits). Update: A final version of this text is available here.

If It’s That Warm, How Come It’s So Damned Cold? 

by James Hansen, Reto Ruedy, Makiko Sato, and Ken Lo
The past year, 2009, tied as the second warmest year in the 130 years of global instrumental temperature records, in the surface temperature analysis of the NASA Goddard Institute for Space Studies (GISS). The Southern Hemisphere set a record as the warmest year for that half of the world. Global mean temperature, as shown in Figure 1a, was 0.57°C (1.0°F) warmer than climatology (the 1951-1980 base period). Southern Hemisphere mean temperature, as shown in Figure 1b, was 0.49°C (0.88°F) warmer than in the period of climatology.

Figure 1. (a) GISS analysis of global surface temperature change. Green vertical bar is estimated 95 percent confidence range (two standard deviations) for annual temperature change. (b) Hemispheric temperature change in GISS analysis. (Base period is 1951-1980. This base period is fixed consistently in GISS temperature analysis papers – see References. Base period 1961-1990 is used for comparison with published HadCRUT analyses in Figures 3 and 4.)

The global record warm year, in the period of near-global instrumental measurements (since the late 1800s), was 2005. Sometimes it is asserted that 1998 was the warmest year. The origin of this confusion is discussed below. There is a high degree of interannual (year‐to‐year) and decadal variability in both global and hemispheric temperatures. Underlying this variability, however, is a long‐term warming trend that has become strong and persistent over the past three decades. The long‐term trends are more apparent when temperature is averaged over several years. The 60‐month (5‐year) and 132 month (11‐year) running mean temperatures are shown in Figure 2 for the globe and the hemispheres. The 5‐year mean is sufficient to reduce the effect of the El Niño – La Niña cycles of tropical climate. The 11‐year mean minimizes the effect of solar variability – the brightness of the sun varies by a measurable amount over the sunspot cycle, which is typically of 10‐12 year duration.

More »

Plass and the Surface Budget Fallacy

Filed under: — raypierre @ 13 January 2010

RealClimate is run by a rather loosely organized volunteer consortium of people with day jobs that in and of themselves can be quite consuming of attention. And so it came to pass that the first I learned about Gavin’s interest in the work of Plass was — by reading RealClimate! In fact, David Archer and I have a book due to appear this year from Wiley/Blackwell (The Warming Papers), which is a collection of historic papers on global warming, together with interpretive essays by David and myself. Needless to say, we pay a lot of attention to the seminal work by Plass in this book. His 1956 QJRMS technical paper on radiative transfer, which is largely the basis of his more popular writings on global warming, was one of the papers we chose to reprint in our collection. In reading historic papers, it is easy to fall into the trap of assuming that investigators of the past are working on the basis of the same underlying set of assumptions in common use today. Through a very close reading of the paper, David and I noticed something about the way Plass estimated surface temperature increase, that Gavin and all previous commentators on Plass — including Kaplan himself — seem to have overlooked.

More »

L&C, GRL, comments on peer review and peer-reviewed comments

Filed under: — gavin @ 10 January 2010

I said on Friday that I didn’t think that Lindzen and Choi (2009) was obviously nonsense. Well, a number of people have disagreed with me, and in doing so, have presented some of the back story on the how the response was handled. I think this deserves to be more widely known in the hope that it will generate some discussion in the community for how such situations might be dealt with in the future.
More »

Switch to our mobile site