The difference between a single calculation and a solid paper in the technical literature is vast. A good paper examines a question from multiple angles and find ways to assess the robustness of its conclusions to all sorts of possible sources of error — in input data, in assumptions, and even occasionally in programming. If a conclusion is robust over as much of this as can be tested (and the good peer reviewers generally insist that this be shown), then the paper is likely to last the test of time. Although science proceeds by making use of the work that others have done before, it is not based on the assumption that everything that went before is correct. It is precisely because that there is always the possibility of errors that so much is based on ‘balance of evidence’ arguments’ that are mutually reinforcing.
[Read more…] about Antarctic warming is robust
Arctic and Antarctic
Warm reception to Antarctic warming story
What determines how much coverage a climate study gets?
It probably goes without saying that it isn’t strongly related to the quality of the actual science, nor to the clarity of the writing. Appearing in one of the top journals does help (Nature, Science, PNAS and occasionally GRL), though that in itself is no guarantee. Instead, it most often depends on the ‘news’ value of the bottom line. Journalists and editors like stories that surprise, that give something ‘new’ to the subject and are therefore likely to be interesting enough to readers to make them read past the headline. It particularly helps if a new study runs counter to some generally perceived notion (whether that is rooted in fact or not). In such cases, the ‘news peg’ is clear.
And so it was for the Steig et al “Antarctic warming” study that appeared last week. Mainstream media coverage was widespread and generally did a good job of covering the essentials. The most prevalent peg was the fact that the study appeared to reverse the “Antarctic cooling” meme that has been a staple of disinformation efforts for a while now.
[Read more…] about Warm reception to Antarctic warming story
State of Antarctica: red or blue?
A couple of us (Eric and Mike) are co-authors on a paper coming out in Nature this week (Jan. 22, 09). We have already seen misleading interpretations of our results in the popular press and the blogosphere, and so we thought we would nip such speculation in the bud.
The paper shows that Antarctica has been warming for the last 50 years, and that it has been warming especially in West Antarctica (see the figure). The results are based on a statistical blending of satellite data and temperature data from weather stations. The results don’t depend on the statistics alone. They are backed up by independent data from automatic weather stations, as shown in our paper as well as in updated work by Bromwich, Monaghan and others (see their AGU abstract, here), whose earlier work in JGR was taken as contradicting ours. There is also a paper in press in Climate Dynamics (Goosse et al.) that uses a GCM with data assimilation (and without the satellite data we use) and gets the same result. Furthermore, speculation that our results somehow simply reflect changes in the near-surface inversion is ruled out by completely independent results showing that significant warming in West Antarctica extends well into the troposphere. And finally, our results have already been validated by borehole thermometery — a completely independent method — at at least one site in West Antarctica (Barrett et al. report the same rate of warming as we do, but going back to 1930 rather than 1957; see the paper in press in GRL).
Mind the Gap!
Confusion has continued regarding trends in global temperatures. The misconception ‘the global warming has stopped’ still lives on in some minds. We have already discussed why this argument is flawed. So why have we failed to convince ;-) ?
Una traduzione in italiano è disponibile qui.
What links the retreat of Jakobshavn Isbrae, Wilkins Ice Shelf and the Petermann Glacier?
Guest commentary from Mauri Pelto
Changes occurring in marine terminating outlet glaciers of the Greenland Ice Sheet and ice shelves fringing the Antarctic Peninsula have altered our sense of the possible rate of response of large ice sheet-ice shelf systems. There is a shared mechanism at work that has emerged from the detailed observations of a number of researchers, that is the key to the onset and progression of the ice retreat. This mechanism is shared despite the vastly different nature of the environments of Jakobshavns Isbrae, Wilkins Ice Shelf and the Petermann Glacier.
[Read more…] about What links the retreat of Jakobshavn Isbrae, Wilkins Ice Shelf and the Petermann Glacier?
How much will sea level rise?
… is the question people have been putting a lot of thought into since the IPCC AR4 report came out. We analysed what was in the report quite carefully at the time and pointed out that the allowance for dynamic ice sheet processes was very uncertain, and actually precluded setting a upper limit on what might be expected. The numbers that appeared in some headlines (up to 59 cm by 2100) did not take that uncertainty into account.
North Pole notes (continued)
This is a continuation of the previous (and now unwieldy) post on the current Arctic situation. We’ll have a proper round up in a few weeks.
North Pole notes
I always find it interesting as to why some stories get traction in the mainstream media and why some don’t. In online science discussions, the fate of this years summer sea ice has been the focus of a significant betting pool, a test of expert prediction skills, and a week-by-week (almost) running commentary. However, none of these efforts made it on to the Today program. Instead, a rather casual article in the Independent showed the latest thickness data and that quoted Mark Serreze as saying that the area around the North Pole had 50/50 odds of being completely ice free this summer, has taken off across the media.
Ice Shelf Instability
Guest contribution from Mauri S. Pelto
Ice shelves are floating platforms of ice fed by mountain glaciers and ice sheets flowing from the land onto the ocean. The ice flows from the grounding line where it becomes floating to the seaward front, where icebergs calve. For a typical glacier when the climate warms the glacier merely retreats, reducing its low elevation, high melting area by increasing its mean elevation. An ice shelf is nearly flat and cannot retreat in this fashion. Ice shelves cannot persist unless the entire ice shelf is an accumulation zone, where snowpack does not completely melt even in the summer.
Moulins, Calving Fronts and Greenland Outlet Glacier Acceleration
Guest Commentary by Mauri Pelto
The net loss in volume and hence sea level contribution of the Greenland Ice Sheet (GIS) has doubled in recent years from 90 to 220 cubic kilometers/year has been noted recently (Rignot and Kanagaratnam, 2007). The main cause of this increase is the acceleration of several large outlet glaciers. There has also been an alarming increase in the number of photographs of meltwater draining into a moulin somewhere on the GIS, often near Swiss Camp (35 km inland from the calving front). The story goes—warmer temperatures, more surface melting, more meltwater draining through moulins to glacier base, lubricating glacier bed, reducing friction, increasing velocity, and finally raising sea level. Examining this issue two years RealClimate suggested this was likely the correct story. A number of recent results suggest that we need to take another look at this story.
[Read more…] about Moulins, Calving Fronts and Greenland Outlet Glacier Acceleration