• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Archives for Gavin

about Gavin Schmidt

Gavin Schmidt is a climate modeler, working for NASA and with Columbia University.

Climate sensitivity

28 Nov 2004 by Gavin

Translations: (Français)

Climate sensitivity is a measure of the equilibrium global surface air temperature change for a particular forcing. It is usually given as a °C change per W/m2 forcing. A standard experiment to determine this value in a climate model is to look at the doubled CO2 climate, and so equivalently, the climate sensitivity is sometimes given as the warming for doubled CO2 (i.e. from 280 ppm to 560 ppm). The forcing from doubled CO2 is around 4 W/m2 and so a sensitivity of 3°C for a doubling, is equivalent to a sensitivity of 0.75 °C/W/m2. The principal idea is that if you know the sum of the forcings, you can estimate what the eventual temperature change will be.

We should underscore that the concepts of radiative forcing and climate sensitivity are simply an empirical shorthand that climatologists find useful for estimating how different changes to the planet’s radiative balance will lead to eventual temperature changes. There are however some subtleties which rarely get mentioned. Firstly, there are a number of ways to define the forcings. The easiest is the ‘instantaneous forcing’ – the change is made and the difference in the net radiation at the tropopause is estimated. But it turns out that other definitions such as the ‘adjusted forcing’ actually give a better estimate of the eventual temperature change. These other forcings progressively allow more ‘fast’ feedbacks to operate (stratospheric temperatures are allowed to adjust for instance), but the calculations get progressively more involved.

Secondly, not all forcings are equal. Because of differences in vertical or horizontal distribution of forcings, some changes can have a more than proportional effect on temperatures. This can be described using a relative ‘efficacy’ factor that depends on the individual forcing. For instance, the effect of soot making snow and sea ice darker has a higher efficacy than an equivalent change in CO2 with the same forcing, mainly because there is a more important ice-albedo feedback in the soot case. The ideal metric of course would be a forcing that can be calculated easily and where every perturbation to the radiative balance had an relative efficacy of 1. Unfortunately, that metric has not yet been found!

Filed Under: Glossary

Isotopes

28 Nov 2004 by Gavin

Isotopes can be thought of as different ‘flavours’ of a particular element (such as oxygen or carbon), that are distinguished by the number of neutrons in their nucleus (and hence their atomic mass). Carbon for instance most commonly has a mass of 12 (written as 12C), but there are also a small fraction of carbon atoms with mass 13 and 14 (13C and 14C), similarly oxygen is normally 16O, but with small amounts of 17O and 18O. All of the isotopes of an element behave in similar way chemically. However, because the mass of each isotope is slightly different there are certain physical processes that will discriminate (or ‘fractionate’) between them. For instance, during evaporation of water, it is slightly easier for the lighter isotopes to escape from the liquid, and so water vapour generally has less 18O than the liquid water from which it came. Because of these physical effects, looking at the ratio of one isotope to another can often be very useful in tracing where these atoms came from.

Filed Under: Glossary

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 38
  • Page 39
  • Page 40

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Unforced variations: Jun 2025
  • Predicted Arctic sea ice trends over time
  • The most recent climate status
  • Unforced variations: May 2025
  • Unforced Variations: Apr 2025
  • WMO: Update on 2023/4 Anomalies

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • Tomáš Kalisz on Unforced variations: Jun 2025
  • nigelj on Unforced variations: Jun 2025
  • patrick o twentyseven on Unforced variations: Jun 2025
  • patrick o twentyseven on Unforced variations: Jun 2025
  • patrick o twentyseven on Unforced variations: Jun 2025
  • Piotr on Predicted Arctic sea ice trends over time
  • Barry E Finch on Unforced variations: Jun 2025
  • Atomsk's Sanakan on Predicted Arctic sea ice trends over time
  • Pedro Prieto on Unforced variations: Jun 2025
  • Pedro Prieto on Unforced variations: Jun 2025
  • Paul Pukite (@whut) on Predicted Arctic sea ice trends over time
  • Barton Paul Levenson on The most recent climate status
  • The Prieto Principle on Unforced variations: Jun 2025
  • The Prieto Principle on Unforced variations: Jun 2025
  • The Prieto Principle on Unforced variations: Jun 2025
  • The Prieto Principle on Unforced variations: Jun 2025
  • The Prieto Principle on Unforced variations: Jun 2025
  • The Prieto Principle on Unforced variations: Jun 2025
  • Kevin McKinney on Unforced variations: Jun 2025
  • The Prieto Principle on Predicted Arctic sea ice trends over time

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,367 posts

11 pages

244,124 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.