RealClimate logo

The Snyder Sensitivity Situation

Filed under: — gavin @ 26 September 2016

Nature published a great new reconstruction of global temperatures over the past 2 million years today. Snyder (2016) uses 61 temperature reconstructions from 59 globally diverse sediment cores and a correlation structure from model simulations of the last glacial maximum to estimate (with uncertainties) the history of global temperature back through the last few dozen ice ages cycles. There are multiple real things to discuss about this – the methodology, the relatively small number of cores being used (compared to what could have been analyzed), the age modeling etc. – and many interesting applications – constraints on polar amplification, the mid-Pleistocene transition, the duration and nature of previous interglacials – but unfortunately, the bulk of the attention will be paid to a specific (erroneous) claim about Earth System Sensitivity (ESS) that made it into the abstract and was the lead conclusion in the press release.

The paper claims that ESS is ~9ºC and that this implies that the long term committed warming from today’s CO2 levels is a further 3-7ºC. This is simply wrong.

More »


  1. C.W. Snyder, "Evolution of global temperature over the past two million years", Nature, 2016.

Why correlations of CO2 and Temperature over ice age cycles don’t define climate sensitivity

Filed under: — gavin @ 24 September 2016

We’ve all seen how well temperature proxies and CO2 concentrations are correlated in the Antarctic ice cores – this has been known since the early 1990’s and has featured in many high-profile discussions of climate change.

EPICA Dome C ice core greenhouse gas and isotope records.

The temperature proxies are water isotope ratios that can be used to estimate Antarctic temperatures and, via a scaling, the global values. The CO2 and CH4 concentration changes can be converted to radiative forcing in W/m2 based on standard formulas. These two timeseries can be correlated and the regression (in ºC/(W/m2)) has the units of climate sensitivity – but what does it represent?

More »

Millennia of sea-level change

How has global sea level changed in the past millennia? And how will it change in this century and in the coming millennia? What part do humans play? Several new papers provide new insights.

2500 years of past sea level variations

This week, a paper will appear in the Proceedings of the National Academy of Sciences (PNAS) with the first global statistical analysis of numerous individual studies of the history of sea level over the last 2500 years (Kopp et al. 2016 – I am one of the authors). Such data on past sea level changes before the start of tide gauge measurements can be obtained from drill cores in coastal sediments. By now there are enough local data curves from different parts of the world to create a global sea level curve.

Let’s right away look at the main result. The new global sea level history looks like this:


Fig. 1 Reconstruction of the global sea-level evolution based on proxy data from different parts of the world. The red line at the end (not included in the paper) illustrates the further global increase since 2000 by 5-6 cm from satellite data. More »


  1. R.E. Kopp, A.C. Kemp, K. Bittermann, B.P. Horton, J.P. Donnelly, W.R. Gehrels, C.C. Hay, J.X. Mitrovica, E.D. Morrow, and S. Rahmstorf, "Temperature-driven global sea-level variability in the Common Era", Proceedings of the National Academy of Sciences, vol. 113, pp. E1434-E1441, 2016.

Ice-core dating corroborates tree ring chronologies

Filed under: — group @ 5 August 2015

Guest commentary from Jonny McAneney

You heard it here first

Back in February, we wrote a post suggesting that Greenland ice cores may have been incorrectly dated in prior to AD 1000. This was based on research by Baillie and McAneney (2015) which compared the spacing between frost ring events (physical scarring of living growth rings by prolonged sub-zero temperatures) in the bristlecone pine tree ring chronology, and spacing between prominent acids in a suite of ice cores from both Greenland and Antarctica. The main conclusion was that ice core dates, in particular those ice cores relied upon the Greenland Ice Core Chronology 2005 (GICC05), such as the NEEM S1 core, were too old by approximately seven years during the 6th and 7th centuries AD.

Last month, in an excellent piece of research (Sigl et al., 2015) by a collaboration including Earth scientists, dendrochonologists, and historians, the chronology of the Greenland North Eemian Ice Drilling core (NEEM) has been reassessed and re-dated, confirming that such an offset does indeed exist in the GICC05 timescale below AD 1000. The clinching evidence was provided by linking tree-ring chronologies to ice cores through two extraterrestrial events…
More »


  1. M.G.L. Baillie, and J. McAneney, "Tree ring effects and ice core acidities clarify the volcanic record of the first millennium", Climate of the Past, vol. 11, pp. 105-114, 2015.
  2. B.M. Vinther, H.B. Clausen, S.J. Johnsen, S.O. Rasmussen, K.K. Andersen, S.L. Buchardt, D. Dahl-Jensen, I.K. Seierstad, M. Siggaard-Andersen, J.P. Steffensen, A. Svensson, J. Olsen, and J. Heinemeier, "A synchronized dating of three Greenland ice cores throughout the Holocene", J. Geophys. Res., vol. 111, 2006.
  3. M. Sigl, J.R. McConnell, L. Layman, O. Maselli, K. McGwire, D. Pasteris, D. Dahl-Jensen, J.P. Steffensen, B. Vinther, R. Edwards, R. Mulvaney, and S. Kipfstuhl, "A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years", Journal of Geophysical Research: Atmospheres, vol. 118, pp. 1151-1169, 2013.
  4. M. Sigl, M. Winstrup, J.R. McConnell, K.C. Welten, G. Plunkett, F. Ludlow, U. Büntgen, M. Caffee, N. Chellman, D. Dahl-Jensen, H. Fischer, S. Kipfstuhl, C. Kostick, O.J. Maselli, F. Mekhaldi, R. Mulvaney, R. Muscheler, D.R. Pasteris, J.R. Pilcher, M. Salzer, S. Schüpbach, J.P. Steffensen, B.M. Vinther, and T.E. Woodruff, "Timing and climate forcing of volcanic eruptions for the past 2,500 years", Nature, vol. 523, pp. 543-549, 2015.

Reflections on Ringberg

As previewed last weekend, I spent most of last week at a workshop on Climate Sensitivity hosted by the Max Planck Institute at Schloss Ringberg. It was undoubtedly one of the better workshops I’ve attended – it was focussed, deep and with much new information to digest (some feel for the discussion can be seen from the #ringberg15 tweets). I’ll give a brief overview of my impressions below.

More »

Switch to our mobile site