RealClimate logo

Technical Note: Sorry for the recent unanticipated down-time, we had to perform some necessary updates. Please let us know if you have any problems.

What is signal and what is noise?

Filed under: — rasmus @ 29 December 2012

The recent warming has been more pronounced in the Arctic Eurasia than in many other regions on our planet, but Franzke (2012) argues that only one out of 109 temperature records from this region exhibits a significant warming trend. I think that his conclusions were based on misguided analyses.

The analysis did not sufficiently distinguish between signal and noise, and mistaking noise for signal will give misguided conclusions.

More »


  1. C. Franzke, "On the statistical significance of surface air temperature trends in the Eurasian Arctic region", Geophysical Research Letters, vol. 39, pp. n/a-n/a, 2012.

A review of cosmic rays and climate: a cluttered story of little success

Filed under: — rasmus @ 25 December 2012

A number of blogs were excited after having leaked the second-order draft of IPCC document, which they interpreted as a “game-changing admission of enhanced solar forcing”.

However, little evidence remains for a link between galactic cosmic rays (GCR) and variations in Earth’s cloudiness. Laken et al. (2012) recently provided an extensive review of the study of the GCR and Earth’s climate, from the initial work by Ney (1959) to the latest findings from 2012.

More »


  1. B.A. Laken, E. Pallé, J. Čalogović, and E.M. Dunne, "A cosmic ray-climate link and cloud observations", J. Space Weather Space Clim., vol. 2, pp. A18, 2012.

The heat is on in West Antarctica

Filed under: — eric @ 23 December 2012

Eric Steig

Regular followers of RealClimate will be aware of our publication in 2009 in Nature, showing that West Antarctica — the part of the Antarctic ice sheet that is currently contributing the most to sea level rise, and which has the potential to become unstable and contribute a lot more (3 meters!) to sea level rise in the future — has been warming up for the last 50 years or so.

Our paper was met with a lot of skepticism, and not just from the usual suspects. A lot of our fellow scientists, it seems, had trouble getting over their long-held view (based only on absence of evidence) that the only place in Antarctica that was warming up was the Antarctica Peninsula. To be fair, our analysis was based on interpolation, using statistics to fill in data where it was absent, so we really hadn’t proven anything; we’d only done an analysis that pointed (strongly!) in a particular direction.

More »

Online video lectures on climate change

Filed under: — stefan @ 20 December 2012

For those who’d like to get the basics of climate change explained first-hand by a climate scientist, here are two video lectures.

In the first, I show some of the basic data sets and findings about global warming, including some comments on historic land marks of our science.

The second lecture deals with the impacts of climate change (with a focus on extreme events and sea-level rise) and the possibilities for holding global warming below 2°C.

These lectures form part of a broader lecture course called World in Transition. It includes 11 themes, presented by the members of the German Advisory Council on Global Change (WBGU). This is a body of experts appointed by the German government and advising it on global change issues. The lecture series, for which international students can enrol and earn credit points, is based on the WBGU flagship report World in Transition – A Social Contract for Sustainability. This report describes how the transition to a sustainable, climate-friendly global economy and life style can be achieved.

Improving the Tropical Cyclone Climate Record

Filed under: — gavin @ 16 December 2012

Guest Commentary by Christopher Hennon (UNC Asheville)

Get involved in a new citizen science project at

The poor quality of the tropical cyclone (TC) data record provides severe constraints on the ability of climate scientists to: a) determine to what degree TCs have responded to shifts in climate, b) evaluate theories on how TCs will respond to climate change in the future. The root cause for the poor data is the severity of the TC conditions (e.g. high wind, rough seas) and the remoteness of these storms – the vast majority of which form and remain well away from most observing networks. Thus, most TCs are not observed directly and those that are (with buoys, aircraft reconnaissance, ships) are often not sampled sufficiently (see the IBTrACS, (Knapp et al., 2010)).

This leaves tropical cyclone forecasters, who are ultimately responsible for recording TC tracks and intensities (i.e. maximum wind speeds), with a challenging problem. Fortunately, there is a tool called the Dvorak Technique which allows forecasters to make a reasonable determination of the TC intensity by simply analyzing a single infrared or visible satellite image, which is almost always available Velden et al., 2006). The technique calls for the analyst to determine the center location of the system, the cloud pattern type, the degree of organization of the pattern, and the intensity trend. A maximum surface wind speed is determined after the application of a number of rules and constraints.

Hurricane Gay (1992)The Dvorak Technique has been used for many years at all global tropical cyclone forecast centers and has been shown in many cases to yield a good estimate of maximum TC wind speed, when applied properly (Knaff et al., 2010). However, there is a level of analyst subjectivity inherent in the procedure; the cloud patterns are not always clear, it is sometimes difficult to accurately determine the storm center and the rules and constraints have been interpreted and applied differently across agencies. This introduces heterogeneity in the global TC record since the Dvorak Technique is usually the only available tool for assessing the maximum wind speed.

There has been recent work to eliminate the human element in the Dvorak Technique by automating the procedure. The Advanced Dvorak Technique (ADT) uses objective storm center and cloud pattern schemes to remove the subjectivity (Olander and Velden, 2007). All other classification rules and constraints are then applied and combined with additional statistical information to produce automated intensity estimates. Although the ADT skill is comparable to experienced human Dvorak analysts, large errors can occur if the scene type is not identified properly.

A new crowd sourcing project, called Cyclone Center, embraces the human element by enabling the public to perform a simplified version of the Dvorak Technique to analyze historical global tropical cyclone (TC) intensities (Hennon, 2012). Cyclone Center’s primary goal is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The Cyclone Center technique standardizes the classification procedure by condensing the Dvorak Technique to a few simple questions that can be answered by global, nonprofessional users.

One of the main advantages of this approach is the inclusion of thousands of users, instead of the 1-3 who would normally classify a TC image. This allows the computation of measures of uncertainty in addition to a mean intensity. Nearly 300,000 images, encompassing all global TCs that formed from 1978-2009, will be classified 30 times each – a feat that would take a dedicated team of twenty Dvorak-trained experts about 12 years to complete. Citizen scientists have already performed over 100,000 classifications since the project launch in September. Once the project is complete, a new dataset of global TC tracks and intensities will be made available to the community to contribute to our efforts to provide the best possible TC data record.

Interested readers are encouraged to learn more about and participate in the project at the website (there are some FAQ on the project blog). The CycloneCenter project is a collaboration between the Citizen Science Alliance, NOAA National Climatic Data Center (NCDC), University of North Carolina at Asheville, and the Cooperative Institute for Climate and Satellites (CICS) – North Carolina.


  1. K.R. Knapp, M.C. Kruk, D.H. Levinson, H.J. Diamond, and C.J. Neumann, "The International Best Track Archive for Climate Stewardship (IBTrACS)", Bulletin of the American Meteorological Society, vol. 91, pp. 363-376, 2010.
  2. C. Velden, B. Harper, F. Wells, J.L. Beven, R. Zehr, T. Olander, M. Mayfield, C. Guard, M. Lander, R. Edson, L. Avila, A. Burton, M. Turk, A. Kikuchi, A. Christian, P. Caroff, and P. McCrone, "The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years", Bulletin of the American Meteorological Society, vol. 87, pp. 1195-1210, 2006.
  3. J.A. Knaff, D.P. Brown, J. Courtney, G.M. Gallina, and J.L. Beven, "An Evaluation of Dvorak Technique–Based Tropical Cyclone Intensity Estimates", Wea. Forecasting, vol. 25, pp. 1362-1379, 2010.
  4. T.L. Olander, and C.S. Velden, "The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery", Wea. Forecasting, vol. 22, pp. 287-298, 2007.
  5. C.C. Hennon, "Citizen scientists analyzing tropical cyclone intensities", Eos, Transactions American Geophysical Union, vol. 93, pp. 385, 2012.

Switch to our mobile site