RealClimate logo


FAQ on climate models: Part II

Filed under: — gavin @ 6 January 2009

This is a continuation of a previous post including interesting questions from the comments.

More Questions

  • What are parameterisations?

    Some physics in the real world, that is necessary for a climate model to work, is only known empirically. Or perhaps the theory only really applies at scales much smaller than the model grid size. This physics needs to be ‘parameterised’ i.e. a formulation is used that captures the phenomenology of the process and its sensitivity to change but without going into all of the very small scale details. These parameterisations are approximations to the phenomena that we wish to model, but which work at the scales the models actually resolve. A simple example is the radiation code – instead of using a line-by-line code which would resolve the absorption at over 10,000 individual wavelengths, a GCM generally uses a broad-band approximation (with 30 to 50 bands) which gives very close to the same results as a full calculation. Another example is the formula for the evaporation from the ocean as a function of the large-scale humidity, temperature and wind-speed. This is really a highly turbulent phenomena, but there are good approximations that give the net evaporation as a function of the large scale (‘bulk’) conditions. In some parameterisations, the functional form is reasonably well known, but the values of specific coefficients might not be. In these cases, the parameterisations are ‘tuned’ to reproduce the observed processes as much as possible.

  • More »

FAQ on climate models

Filed under: — group @ 3 November 2008 - (Svenska)

We discuss climate models a lot, and from the comments here and in other forums it’s clear that there remains a great deal of confusion about what climate models do and how their results should be interpreted. This post is designed to be a FAQ for climate model questions – of which a few are already given. If you have comments or other questions, ask them as concisely as possible in the comment section and if they are of enough interest, we’ll add them to the post so that we can have a resource for future discussions. (We would ask that you please focus on real questions that have real answers and, as always, avoid rhetorical excesses).

Part II is here.

More »

Start here

Filed under: — group @ 22 May 2007 - (Slovenčina) (Polski) (Български)

We’re often asked to provide a one stop link for resources that people can use to get up to speed on the issue of climate change, and so here is a selection. Unlike our other postings, we’ll amend this as we discover or are pointed to new resources. Different people have different needs and so we will group resources according to the level people start at.

For complete beginners:

NCAR: Weather and climate basics
Center for Climate and Energy Solutions: Global Warming basics
Wikipedia: Global Warming
NASA: Global Warming update
National Academy of Science: America’s Climate Choices (2011)
Encyclopedia of Earth: Climate Change Collection
Global Warming FAQ (Tom Rees)
Global Warming: Man or Myth? (Scott Mandia, SUNY Suffolk)
Oxford Begbrooke: Climate Basics

There is a booklet on Climate Literacy from multiple agencies (NOAA, NSF, AAAS) available here (pdf).

The UK Govt. has a good site on The Science of Climate Change (added Sep 2010).

The portal for climate and climate change of the ZAMG (Zentralaanstalt für Meteorologie und Geodynamik, Vienna, Austria). (In German) (added Jan 2011).

Those with some knowledge:

The IPCC AR4 Frequently Asked Questions (here are an excellent start. These cover:

Updates to these questions were provided in the 5th Assessment report (pdf).

The UK Royal Society and US National Academies of Science produced a joint Q&A on climate change in 2014, and an update in 2017.

RealClimate: Start with our index

Informed, but in need of more detail:

Science: You can’t do better than the IPCC reports themselves (AR5 2013, AR4 2007, TAR 2001).

History: Spencer Weart’s “Discovery of Global Warming” (AIP)

Art: Robert Rohde’s “Global Warming Art

Informed, but seeking serious discussion of common contrarian talking points:

All of the below links have indexed debunks of most of the common points of confusion:

Please feel free to suggest other suitable resources, particularly in different languages, and we’ll try to keep this list up to date.

Does a Global Temperature Exist?

Filed under: — rasmus @ 25 March 2007 - (Português)

Does a global temperature exist? This is the question asked in a recently published article in Journal of Non-Equilibrium Thermodynamics by Christopher Essex, Ross McKitrick, and Bjarne Andresen. The paper argues that the global mean temperature is not physical, and that there may be many other ways of computing a mean which will give different trends.

The common arithmetic mean is just an estimate that provides a measure of the centre value of a batch of measurements (centre of a cloud of data points, and can be written more formally as the integral of x f(x) dx. The whole paper is irrelevant in the context of a climate change because it missed a very central point. CO2 affects all surface temperatures on Earth, and in order to improve the signal-to-noise ratio, an ordinary arithmetic mean will enhance the common signal in all the measurements and suppress the internal variations which are spatially incoherent (e.g. not caused by CO2 or other external forcings). Thus the choice may not need a physical justification, but is part of a scientific test which enables us to get a clearer ‘yes’ or ‘no’. One could choose to look at the global mean sea level instead, which does have a physical meaning because it represents an estimate for the volume of the water in the oceans, but the choice is not crucial as long as the indicator used really responds to the conditions under investigation. And the global mean temperature is indeed a function of the temperature over the whole planetary surface.

More »

Has Pacific Northwest snowpack declined? Yes.

Filed under: — eric @ 20 March 2007

There has been a bit of a flap here at the University of Washington over the state of the snowpack in United States Pacific Northwest region. The Seattle city mayor, Greg Nickels (a well known advocate for city-based CO2 reduction initiatives) wrote in an Op-Ed piece in the Seattle Times that

The average snowpack in the Cascades has declined 50 percent since 1950 and will be cut in half again in 30 years if we don’t start addressing the problems of climate change now. That snow not only provides our drinking water, it powers the hydroelectric dams that keep our lights on.
More »

Aerosols: The Last Frontier?

Filed under: — group @ 21 February 2007 - (Português)

Guest commentary from Juliane Fry, UC Berkeley

The recently released IPCC 2007 Fourth Assessment Report Summary for Policymakers reminds us that aerosols remain the least understood component of the climate system. Aerosols are solid or liquid particles suspended in the atmosphere, consisting of (in rough order of abundance): sea salt, mineral dust, inorganic salts such as ammonium sulfate (which has natural as well as anthropogenic sources from e.g. coal burning), and carbonaceous aerosol such as soot, plant emissions, and incompletely combusted fossil fuel. As should be apparent from this list, there are many natural sources of aerosol, but changes have been observed in particular, in the atmospheric loading of carbonaceous aerosol and sulphates, which originate in part from fossil fuel burning. While a relatively minor part of the overall aerosol mass, changes in the anthropogenic portion of aerosols since 1750 have resulted in a globally averaged net radiative forcing of roughly -1.2 W/m2, in comparison to the overall average CO2 forcing of +1.66 W/m2.
More »

What triggers ice ages?

Filed under: — rasmus @ 16 February 2007 - (Português) (Türkçe) (Français)

by Rasmus Benestad, with contributions from Caspar & Eric

In a recent article in Climatic Change, D.G. Martinson and W.C. Pitman III discuss a new hypothesis explaining how the climate could change abruptly between ice ages and inter-glacial (warm) periods. They argue that the changes in Earth’s orbit around the Sun in isolation is not sufficient to explain the estimated high rate of change, and that there must be an amplifying feedback process kicking in. The necessity for a feedback is not new, as the Swedish Nobel Prize winner (Chemistry), Svante Arrhenius, suggested already in 1896 that CO2 could act as an amplification mechanism. In addition, there is the albedo feedback, where the amount of solar radiation that is reflected back into space, scales with the area of the ice- and snow-cover. And are clouds as well as other aspects playing a role.

More »

A Linkage Between the LIA and Gulf Stream?

Filed under: — mike @ 30 November 2006

Michael Mann & Gavin Schmidt

The precise factors underlying the so-called “Little Ice Age” (LIA) have been intensely debated within the scientific community. One key metric in this debate is the spatial pattern of cooling which may provide a ‘fingerprint’ of the underlying climate change, whether that was externally forced (from solar or volcanic activity) or was part of an intrinsic mode of variability.

Surface temperatures in parts of Europe appear to have have averaged nearly 1°C below the 20th century mean during multidecadal intervals of the late 16th and late 17th century (and with even more extreme coolness for individual years), though most reconstructions indicate less than 0.5°C cooling relative to 20th century mean conditions for the Northern Hemisphere as a whole. There is much less data during these time intervals for the Southern Hemisphere, and that severely limits what conclusions can be drawn there. Just what combination of factors could explain this pattern of observations has remained somewhat enigmatic. A new ingredient in this debate comes with a recent paper in Nature by Lund et al.
More »

Short and simple arguments for why climate can be predicted

Filed under: — rasmus @ 12 August 2006

Sometimes, I encounter arguments suggesting that since we cannot predict the weather beyond a couple of weeks, then it must be impossible to predict the climate in 100 years. Such statements tend to present themselves as a kind of revelation, often in social settings and parties after I have revealed for some of the guests that I’m a climatologist (if I say I work for the Meteorological Institute, I almost always get the question “so, what’s the weather going to be like tomorrow?”). Such occasions also tend to be times when I’m not too inclined to indulge in deep scientific or technical explanations. Or when talking to a journalist who wants an easy answer. In those cases I try to provide a short and simple, but convincing, explanation that is easy for most people to understand why climate can be predicted despite the chaotic nature of the weather (a more theoretical discussion is provided in the earlier post Chaos and Climate). One approach is to try to relate the topic to something with which they are familiar, such as to point to empirical observations which most accept (I suppose with hindsight it could be similar to the researchers in the early 20th century trying to convince that nuclear reactions were possible – just look at the Sun, and there is the proof! Or before that, the debate about whether atoms were real or not – just look at the blue sky, and you look at the proof…). I like to emphasised the words ‘weather‘ and ‘climate‘ above, because they mean different things.

More »

Decrease in Atlantic circulation?

Filed under: — group @ 30 November 2005 - (Français)

by Gavin Schmidt and Michael Mann

In a sure-to-be widely publicized paper in the Dec. 1 Nature, Bryden et al. present results from oceanographic cruises at 25°N across the Atlantic showing a ~30% decline in the ocean overturning circulation. These cruises have been repeated every few years since 1957, and the last two cruises (in 1998 and 2004) show notable changes in the structure of the deep return circulation. In particular, the very deepest part of the return flow (at around 3000 to 5000 m) has reduced and moved up in the water column compared to previous decades. How solid is this result and what might it imply for climate?
More »