Four new papers discuss the relatiosnhip between solar activity and climate: one by Judith Lean (2010) in WIREs Climate Change, a GRL paper by Calogovic et al. (2010), Kulmala et al. (2010), and an on-line preprint by Feulner and Rahmstorf (2010). They all look at different aspects of how changes in solar activity may influence our climate.
Sun-earth connections
Something Is X in the State of Denmark
We received a letter with the title ‘Climate Change: The Role of Flawed Science‘ which may be of interest to the wider readership. The author, Peter Laut, is Professor (emeritus) of physics at The Technical University of Denmark and former scientific advisor on climate change for The Danish Energy Agency. He has long been a critic of the hypothesis that solar activity dominates the global warming trend, and has been involved in a series of heated public debates in Denmark. Even though most of his arguments concern scientific issues, such as data handling, and arithmetic errors, he also has much to say about the way that the debate about climate change has been conducted. It’s worth noting that he sent us this letter before the “CRU email” controversy broke out, so his criticism of the IPCC for being too even handed, is ironic and timely.
Update – the link in the letter is now fixed. -rasmus
Why the continued interest?
I believe the idea that galactic cosmic rays (GCR) play a role for the present global warming is unlikely to fade soon, despite a growing number of scientific arguments that normally would falsify a hypothesis and lay it dead (see links here and here). Despite all the arguments against the role of GCR, there was a solicited talk about ‘cosmoclimatology’ at the European Meteorological Society’s (EMS) annual meeting in Toulouse. Henrik Svensmark is further invited by the Norwegian Academy of Science and Letters (NASL) to provide an introduction to their seminar on climate. So why is the GCR-hypothesis still perceived as an interesting explanation?
Still not convincing
In a new GRL paper, Svensmark et al., claim that liquid water content in low clouds is reduced after Forbush decreases (FD), and for the most influential FD events, the liquid water content in the oceanic atmosphere can diminish by as much as 7%. In particular, they argue that there is a substantial decline in liquid water clouds, apparently tracking a declining flux of galactic cosmic rays (GCR), reaching a minimum days after the drop in GCR levels. The implication would be that GCR can affect climate through modulating the low-level cloudiness. The analysis is based on various remote sensing products.
ACRIM vs PMOD
Two recent papers (Lockwood & Fröhlich, 2008 – ‘LF08’; Scafetta & Willson, 2009 – ‘SW09’) compare the analysis of total solar irradiance (TSI) and the way the TSI measurements are combined to form a long series consisting of data from several satellite missions. The two papers come to completely opposite conclusions regarding the long term trend. So which one (if either) is right, then? And does it really matter?
Aerosol effects and climate, Part II: the role of nucleation and cosmic rays
Guest post by Bart Verheggen, Department of Air Quality and Climate Change , Energy research Institute of the Netherlands (ECN)
In Part I, I discussed how aerosols nucleate and grow. In this post I’ll discuss how changes in nucleation and ionization might impact the net effects.
Cosmic rays
Galactic cosmic rays (GCR) are energetic particles originating from space entering Earth’s atmosphere. They are an important source of ionization in the atmosphere, besides terrestrial radioactivity from e.g. radon (naturally emitted by the Earth’s surface). Over the oceans and above 5 km altitude, GCR are the dominant source. Their intensity varies over the 11 year solar cycle, with a maximum near solar minimum. Carslaw et al. give a nice overview of potential relations between cosmic rays, clouds and climate. Over the first half of the 20th century solar irradiance has slightly increased, and cosmic rays have subsequently decreased. RC has had many previous posts on the purported links between GCR and climate, e.g. here, here and here.
[Read more…] about Aerosol effects and climate, Part II: the role of nucleation and cosmic rays
The Younger Dryas comet-impact hypothesis: gem of an idea or fool’s gold?
There was a paper in Science last week that has gotten quite a bit of press. It reports further evidence in support of the idea that the Younger Dryas — a distinct period towards the end of the last ice age when the deglaciation in the Northern Hemisphere was interrupted for a period of about 1300 years — was caused by a barrage of comets hitting North America.
When the first papers on this came out last year, we expressed skepticism. We remain skeptical and our reasons remain unchanged. But we think it is worth saying a bit more on this, because the reporting on this issue has largely ignored just how big an idea this is, and therefore how much more work would need to be done before it could be taken very seriously.
[Read more…] about The Younger Dryas comet-impact hypothesis: gem of an idea or fool’s gold?
Ozone holes and cosmic rays
Browsing through the blogosphere recently, I came across an interesting little story about the scientific method, scientific progress, and un-scientific spin (h/t Hank Roberts). The subject concerns the polar ozone hole in Antarctica and a possible role for cosmic rays in its variability on solar cycle timescales. The proponents of this link are a small research group at the University of Sherbrooke in Canada, who find themselves up against the mainstream stratospheric chemistry community and whose ideas are twisted out of all recognition by the more foolish of the usual suspects.
A Galactic glitch
Knud Jahnke and Rasmus Benestad
After having watched a new documentary called the ‘Cloud Mystery’ – and especially the bit about the galaxy (approximately 2 – 4 minutes into the linked video clip) – we realised that a very interesting point has been missed in earlier discussions about ‘climate, galactic cosmic rays and the evolution of the Milky Way galaxy.
It is claimed in ‘The Cloud Mystery’, the book ‘The Chilling Stars’, and related articles that our solar system takes about 250 million years to circle the Milky Way galaxy and that our solar system crosses one of the spiral arms about every ~150 million years (Shaviv 2003).
But is this true? Most likely not. As we will discuss below, this claim is seriously at odds with astrophysical data.
[Read more…] about A Galactic glitch
A phenomenological sequel
Does climate sensitivity depend on the cause of the change?
Can a response to a forcing wait and then bounce up after a period of inertness?
Does the existence of an 11-year time-scale prove the existence of solar forcing?
Why does the amplitude of the secular response drop when a long-term trend is added?
[Read more…] about A phenomenological sequel