RealClimate logo


Climate Change and Tropical Cyclones (Yet Again)

By Rasmus Benestad & Michael Mann
Hurricane Katerina
Just as Typhoon Nargis has reminded us of the destructive power of tropical cyclones (with its horrible death toll in Burma–around 100,000 according to the UN), a new paper by Knutson et al in the latest issue of the journal Nature Geosciences purports to project a reduction in Atlantic hurricane activity (principally the ‘frequency’ but also integrated measures of powerfulness).

The close timing of the Knutson et al and Typhoon Nargis is of course coincidental. But the study has been accorded the unprecedented privilege (that is, for a climate change article published during the past 7 years) of a NOAA press conference. What’s the difference this time? Well, for one thing, the title of the paper: “Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions” (emphasis added).

More »

Tropical cyclone history – part I: How reliable are past hurricane records?

Filed under: — group @ 18 February 2008

Guest Commentary from Urs Neu

When discussing the influence of anthropogenic global warming on hurricane or tropical cyclone (TC) frequency and intensity (see e.g. here, here, and here), it is important to examine observed past trends. As with all climate variables, the hurricane record becomes increasingly uncertain when we go back in time. However, the hurricane record has some peculiarities: hurricanes are highly confined structures, so you have to be at the right place at the right time to observe them. Secondly, hurricanes spend most of their life in the open oceans, i.e. in regions where there are very few people and no fixed observations. This means that the reliability of the long-term hurricane record is dependent on who was measuring them, and how, at any given time. The implementation of new observation methods, for example, might have altered the quality of the record considerably. But how much? This crucial question has been widely discussed in the recent scientific literature (e.g. Chang and Guo 2007, Holland and Webster 2007, Kossin et al. 2007, Landsea 2007, Mann et al. 2007). Where do we stand at the moment? This post will concentrate on the North Atlantic, which has the longest record.

More »

Storm World: A Review

Filed under: — mike @ 18 June 2007

If you are a RealClimate regular, you are undoubtedly aware of our ongoing interest in the developments in the scientific understanding of potential hurricane-climate change linkages. This is an area of the science where a substantial body of significant new research has emerged even since RealClimate’s inception in late 2004. The scientific research in this area, and the media frenzy and political theatrics that have inescapably followed it, are thoughtfully placed in a broader historical context in a fascinating new book by Chris Mooney entitled Storm World: Hurricanes, Politics, and the Battle over Global Warming. Anyone who is at all interested in the scientific history that has led to our current understanding of Hurricanes and their potential linkages with climate change, will find this book a page turner. The book is a nice complement to Kerry Emanuel’s recent book Divine Wind: The History and Science of Hurricanes (which too is so readable that it lies on our coffee table). Mooney in a sense picks up where Emanuel’s left off. Like Emanuel, he explores the history of the science. But he uses this historical context, and his studies of the personalities of key actors, to explore how the current scientific debate can be traced back to a rift that has emerged over many decades between distinct communities of atmospheric scientists.
More »

Hurricane Spin

Filed under: — group @ 24 April 2007

Michael Mann and Gavin Schmidt

A recent paper by Vecchi and Soden (preprint) published in the journal Geophysical Research Letters has been widely touted in the news (and some egregiously bad editorials), and the blogosphere as suggesting that increased vertical wind shear associated with tropical circulation changes may offset any tendencies for increased hurricane activity in the tropical Atlantic due to warming oceans. Some have even gone so far as to state that this study proves that recent trends in hurricane activity are part of a natural cycle. Most of this is just ‘spin’ (pun intended), but as usual, the real story is a little more nuanced.
More »

Broad Irony

Filed under: — group @ 13 March 2007

Michael Mann and Gavin Schmidt

[update 3/20/07: The New York Times has run a short letter from us w/ a link to RealClimate for more info (scroll down to 5th letter; the 2nd letter from James McCarthy of Harvard is quite good too, as are some of the others).]

The first rule when criticizing popular science presentations for inaccuracies should be to double check any ‘facts’ you use. It is rather ironic then that William Broad’s latest piece on Al Gore plays just as loose with them as he accuses Gore of doing.

We criticized William Broad previously (Broadly Misleading) for a piece that misrepresented the scientific understanding of the factors that drive climate change over millions of years, systematically understating the scientifically-established role of greenhouse gases, and over-stating the role of natural factors including those as speculative as cosmic rays (see our recent discussion here). In this piece, Broad attempts to discredit Gore’s “An Inconvenient Truth” by exaggerating the legitimate, but minor, criticisms of his treatment of the science by experts on climate science, and presenting specious or unsubstantiated criticisms by a small number of the usual, well-known contrarians who wouldn’t agree even if Gore read aloud from the latest IPCC report.
More »

Kasırga Ateşi

Filed under: — gavin @ 1 March 2007 - (Português) (Français) (English)

The big problem with much of the discussions about trends in hurricane activity is that the databases that everyone is working from are known to have significant inhomogeneities due to changes in observing practice and technology over the years. So it’s not surprising that a new re-analysis (Kossin et al, published yesterday) has been generating significant interest and controversy among the hurricane research community (see e.g. Prometheus or Chris Mooney). However, rather than this study being taken for what it is – a preliminary and useful attempt to make homogeneous a part of the data (1983 to 2005) – it is unfortunately being treated as if it was the definitive last word. We’ve often made the point that single papers are not generally the breakthroughs that are sometimes implied in press releases or commentary sites and this case is a good example of that.
More »

El Nino, Global Warming, and Anomalous U.S. Winter Warmth

Filed under: — mike @ 8 January 2007 - (Slovenčina) (Svenska) (English)

It has now become all too common. Peculiar weather precipitates immediate blame on global warming by some, and equally immediate pronouncements by others (curiously, quite often the National Oceanic and Atmospheric Administration in recent years) that global warming can’t possibly be to blame. The reality, as we’ve often remarked here before, is that absolute statements of neither sort are scientifically defensible. Meteorological anomalies cannot be purely attributed to deterministic factors, let alone any one specific such factor (e.g. either global warming or a hypothetical long-term climate oscillation).

Lets consider the latest such example. In an odd repeat of last year (the ‘groundhog day’ analogy growing ever more appropriate), we find ourselves well into the meteorological Northern Hemisphere winter (Dec-Feb) with little evidence over large parts of the country (most noteably the eastern and central U.S.) that it ever really began. Unsurprisingly, numerous news stories have popped up asking whether global warming might be to blame. Almost as if on cue, representatives from NOAA’s National Weather Service have been dispatched to tell us that the event e.g. “has absolutely nothing to do with global warming”, but instead is entirely due to the impact of the current El Nino event.

[Update 1/9/07: NOAA coincidentally has announced today that 2006 was officially the warmest year on record for the U.S.]
[Update 2/11/08: It got bumped to second place. ]
More »

Tropical SSTs: Natural variations or Global warming?

Filed under: — group @ 11 September 2006

by Michael Mann and Gavin Schmidt

Roughly a year ago, we summarized the state of play in the ongoing scientific debate over the role of anthropogenic climate change in the observed trends in hurricane activity. This debate (as carefully outlined by Curry et al recently) revolves around a number of elements – whether the hurricane (or tropical cyclone) data show any significant variations, what those variations are linked to, and whether our understanding of the physics of tropical storms is sufficient to explain those links.

Several recent studies such as Emanuel (2005 — previously discussed here) and Hoyos et al (2006 — previously discussed here) have emphasized the role of increasing tropical sea surface temperatures (SSTs) on recent increases in hurricane intensities, both globally and for the Atlantic. The publication this week of a comprehensive paper by Santer et al provides an opportunity to assess the key middle question – to what can we attribute the relevant changes in tropical SSTs? And in particular, what can we say about Atlantic SSTs where we have the best data? More »

Fact, Fiction, and Friction in the Hurricane Debate

Filed under: — group @ 18 August 2006

Michael Mann and Gavin Schmidt

Judith Curry and colleagues have an interesting (and possibly provocative) article, “Mixing Politics and Science in Testing the Hypothesis That Greenhouse Warming Is Causing a Global Increase in Hurricane Intensity” in the latest issue of the Bulletin of the American Meteorological Society (BAMS). The article provides a solid review of the recent developments in the science focusing on potential climate change impacts on tropical cyclones. However, the article is more novel in its approach than the typical scientific review article. For instance, it attempts to deal with the issue of how one should test hypotheses that reflect a complex causal chain of individual hypotheses. This is of course relevant to investigations of climate change influences on tropical cyclone activity, where one is attempting to connect a phenomenon (climate change) that is global in spatial scale and multidecadal in timescale, to a phenomena that is intrinsically “mesoscale” (that is, spans at most hundreds of kilometers) in space and lasts only a few days.

More unusually, the article also takes an introspective look at the role of scientists in communicating societally-relevant science to the public, and provides a critical review of how the science dealing with climate change impacts on tropical cyclones and hurricanes has been reported in the media, and how that reporting has occasionally deepened the polarisation on the issue. In doing so, the article revisits some of the “false objectivity” problems we have talked about before (see here and here). They also assess fairly the quality of the arguments that have been made in response to the Emanuel (2005) and Webster et al (2005) papers in the hope of focussing discussion on the more valid points, rather than some of the more fallacious arguments. The article is unapologetic in advancing their particular point of view, and while we generally share it, we imagine that some readers may disagree. We hope, as we suspect the authors do as well, that it will in any case generate a productive discussion.

NOAA: Hurricane forecasts

Filed under: — group @ 9 June 2006

Guest commentary from Thomas Crowley

NOAA has issued its annual forecast for the hurricane season, along with its now-standard explanation that there is a natural cycle of multidecadal (40-60 year) length in the North Atlantic circulation (often referred to as the “Atlantic Multidecadal Oscillation”–see Figure), that is varying the frequency of Atlantic tropical cyclones, and that the present high level of activity is due to a concurrent positive peak in this oscillation. More »