RealClimate logo


The answer is blowing in the wind: The warming went into the deep end

There has been an unusual surge of interest in the climate sensitivity based on the last decade’s worth of temperature measurements, and a lengthy story in the Economist tries to argue that the climate sensitivity may be lower than previously estimated. I think its conclusion is somewhat misguided because it missed some important pieces of information (also see skepticalscience’s take on this story here).

The ocean heat content and the global mean sea level height have marched on.

While the Economist referred to some unpublished work, it missed a new paper by Balmaseda et al. (2013) which provides a more in-depth insight. Balmaseda et al suggest that the recent years may not have much effect on the climate sensitivity after all, and according to their analysis, it is the winds blowing over the oceans that may be responsible for the ‘slow-down’ presented in the Economist.

More »

References

  1. M.A. Balmaseda, K.E. Trenberth, and E. Källén, "Distinctive climate signals in reanalysis of global ocean heat content", Geophysical Research Letters, vol. 40, pp. 1754-1759, 2013. http://dx.doi.org/10.1002/grl.50382

Ice hockey

Eric Steig

It is well known that ice shelves on the Antarctic Peninsula have collapsed on several occasions in the last couple of decades, that ice shelves in West Antarctica are thinning rapidly, and that the large outlet glaciers that drain the West Antarctic ice sheet (WAIS) are accelerating. The rapid drainage of the WAIS into the ocean is a major contributor to sea level rise (around 10% of the total, at the moment).

All of these observations match the response, predicted in the late 1970s by glaciologist John Mercer, of the Antarctic to anthropogenic global warming. As such, they are frequently taken as harbingers of greater future sea level rise to come. Are they?

Two papers published this week in Nature Geoscience provide new information that helps to address this question. One of the studies (led by me) says “probably”, while another (Abram et al.) gives a more definitive “yes”. More »

Should regional climate models take the blame?

Kerr (2013) recently provided a critical review of regional climate models (“RCMs”). I think his views have caused a stir in the regional climate model community. So what’s the buzz all about?

RCMs provide important input to many climate services, for which there is a great deal of vested interest on all levels. On the international stage, high-level talks lead to the establishment of a Global Framework for Climate Services (GFCS) during the World Climate Conference 3 (WCC3) in Geneva 2009.

More »

References

  1. R.A. Kerr, "Forecasting Regional Climate Change Flunks Its First Test", Science, vol. 339, pp. 638-638, 2013. http://dx.doi.org/10.1126/science.339.6120.638

2012 Updates to model-observation comparisons

Time for the 2012 updates!

As has become a habit (2009, 2010, 2011), here is a brief overview and update of some of the most discussed model/observation comparisons, updated to include 2012. I include comparisons of surface temperatures, sea ice and ocean heat content to the CMIP3 and Hansen et al (1988) simulations.
More »

On Sensitivity Part II: Constraining Cloud Feedback without Cloud Observations

Classé dans: — group @ 4 janvier 2013

Guest Commentary by Karen M. Shell, Oregon State University

Link to Part I.

Clouds are very pesky for climate scientists. Due to their high spatial and temporal variability, as well as the many processes involved in cloud droplet formation, clouds are difficult to model. Furthermore, clouds have competing effects on solar and terrestrial radiation. Increases in clouds increase reflected sunlight (a cooling effect) but also increase the greenhouse effect (a warming effect). The net effect of clouds at a given location depends the kind of clouds (stratus, cumulus etc.), their distribution in the vertical and on which radiative effect dominates.

Not only is it difficult to correctly represent clouds in climate models, but estimating how clouds and their radiative effects will change with global warming (i.e., the cloud feedback) is very difficult. Other physical feedbacks have more obvious links between temperature and the climate variable. For example, we expect and have strong evidence for the increase in water vapor in a warmer climate due to the increased saturation specific humidity, or the reduced reflection of sunlight due to the melting of snow and ice at higher temperature. However, there isn’t a simple thermodynamic relationship between temperature and cloud amount, and the complexities in the radiative impacts of clouds mean that an increase in clouds in one location may result in net heating, but would correspond to a cooling elsewhere. Thus, most of the uncertainty in the response of climate models to increases in CO2 is due to the uncertainty of the cloud feedback.

So how cool is it then that the recent paper by Fasullo and Trenberth estimates the net climate sensitivity without getting into the details of the cloud feedback then? Quite cool.
More »

References

  1. J.T. Fasullo, and K.E. Trenberth, "A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity", Science, vol. 338, pp. 792-794, 2012. http://dx.doi.org/10.1126/science.1227465

Switch to our mobile site