RealClimate logo

Technical Note: Sorry for the recent unanticipated down-time, we had to perform some necessary updates. Please let us know if you have any problems.

2012 Updates to model-observation comparisons

Time for the 2012 updates!

As has become a habit (2009, 2010, 2011), here is a brief overview and update of some of the most discussed model/observation comparisons, updated to include 2012. I include comparisons of surface temperatures, sea ice and ocean heat content to the CMIP3 and Hansen et al (1988) simulations.
More »

On Sensitivity Part II: Constraining Cloud Feedback without Cloud Observations

Filed under: — group @ 4 January 2013

Guest Commentary by Karen M. Shell, Oregon State University

Link to Part I.

Clouds are very pesky for climate scientists. Due to their high spatial and temporal variability, as well as the many processes involved in cloud droplet formation, clouds are difficult to model. Furthermore, clouds have competing effects on solar and terrestrial radiation. Increases in clouds increase reflected sunlight (a cooling effect) but also increase the greenhouse effect (a warming effect). The net effect of clouds at a given location depends the kind of clouds (stratus, cumulus etc.), their distribution in the vertical and on which radiative effect dominates.

Not only is it difficult to correctly represent clouds in climate models, but estimating how clouds and their radiative effects will change with global warming (i.e., the cloud feedback) is very difficult. Other physical feedbacks have more obvious links between temperature and the climate variable. For example, we expect and have strong evidence for the increase in water vapor in a warmer climate due to the increased saturation specific humidity, or the reduced reflection of sunlight due to the melting of snow and ice at higher temperature. However, there isn’t a simple thermodynamic relationship between temperature and cloud amount, and the complexities in the radiative impacts of clouds mean that an increase in clouds in one location may result in net heating, but would correspond to a cooling elsewhere. Thus, most of the uncertainty in the response of climate models to increases in CO2 is due to the uncertainty of the cloud feedback.

So how cool is it then that the recent paper by Fasullo and Trenberth estimates the net climate sensitivity without getting into the details of the cloud feedback then? Quite cool.
More »


  1. J.T. Fasullo, and K.E. Trenberth, "A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity", Science, vol. 338, pp. 792-794, 2012.

On sensitivity: Part I

Filed under: — gavin @ 3 January 2013

Climate sensitivity is a perennial topic here, so the multiple new papers and discussions around the issue, each with different perspectives, are worth discussing. Since this can be a complicated topic, I’ll focus in this post on the credible work being published. There’ll be a second part from Karen Shell, and in a follow-on post I’ll comment on some of the recent games being played in and around the Wall Street Journal op-ed pages.

More »

Some AGU highlights

Here a few of the videos of the named lectures from last week that are worth watching. There are loads more videos from selected sessions on the AGU Virtual Meeting site (the AGU YouTube channel has quite a lot more from past meetings too).

All well worth the time.

More »

Responses to volcanoes in tree rings and models

Filed under: — gavin @ 29 November 2012

Houston, we have a problem.

Admittedly, not a huge problem and not one that most people, or even most climatologists, are particularly fascinated by, but one which threads together many topics (climate models, tree rings, paleo-climate) which have been highlighted here in the past. The problem is that we have good evidence in the ice core records for very large tropical eruptions over the last 1000 years – in particular the eruptions in 1258/1259, 1452 and 1809 to 1815 – but for which many paleo-reconstructions barely show a blip in temperature. Models, in attempting to simulate this period, show varied but generally larger (and sometimes much larger) responses. The differences are significant enough to have prompted a few people to try and look into why this mismatch is occurring.

Whenever there is a mismatch between model and observation, there are, roughly speaking, at least three (non-exclusive) possibilities: the model is wrong, the observational data are wrong or the comparison is not like-with-like. There have been many examples of resolved mismatches in each category so all possibilities need to be looked at.

As described in a previous post earlier this year, Mann et al., 2012 (pdf), postulated that for extreme volcanoes, the cooling would be sufficient to saturate the growth response, and that some trees might `skip´ a ring for that year leading to a slight slippage in tree-ring dating, a potential smearing of the composite chronologies, and a further underestimate of the cooling in tree-ring based large-scale reconstructions.

This hypothesis has now been challenged by a group of authors in a comment (Anchukaitis et al.) (pdf, SI, code), who focus on the appropriateness of the tree ring growth model and the spatial pattern the volcanic climate responses. The Mann et al. response (pdf, SI) presents some further modeling and 19th century observational data in support of the original hypothesis.

Of course, there are still two other possibilities to consider. First, the models may have an excessive response. This could be due to either models responding excessively to the correct forcing, or could be related to an excessive forcing itself. There are indeed some important uncertainties in estimating the history of volcanic forcing – which involves inferring a stratospheric aerosol load (and effective radius of the particles and their distribution) from a network of sulphate peaks in ice cores in Greenland and Antarctica. For example, the forcing for the big eruption around 1453 differs by a factor of 2 in the inferred forcing (-12 W/m2 and -5.4 W/m2) in the two estimates proposed for the recent model-intercomparison (Schmidt et al., 2012). Note too that the details of how aerosols are implemented in any specific model can also make a difference to the forcing, and there are many (as yet untested) assumptions built into the forcing reconstructions.

It is also conceivable that climate models overreact to volcanic forcing – however, excellent matches to the Pinatubo response in temperature, radiative anomalies, water vapour and dynamic responses, where we know the volcanic aerosol load well, make that tricky to support (Hansen et al, 2007) (pdf, SI). (As an aside, the suggestion in this paper that the response to Krakatoa (1883) was underpredicted by the historical SST fields was partially vindicated by the results from HadSST3 which showed substantially more cooling).

The third possibility is that some tree-ring reconstructions can’t be easily compared to simple temperature averages from the models. As both the original paper and the comment suggests, there are important effects from memory from previous years in ring widths and, potentially, increases in diffuse light post-eruption promoting growth spurts. This needs to be assessed using more sophisticated forward models for tree ring growth applied to the models’ output – a feature in both the Mann et al, and Anchukaitis et al. approaches. More work is likely needed on this, and using the wider variety of model experiments coming out of CMIP5/PMIP3.

There is clearly potential for these competing hypotheses to get sorted out. Information from newly-digitised old instrumental records in the early 19th Century such as shipping records for the East India Company (Brohan et al, 2012), doesn’t support the largest modelled responses to Tambora (1815), but does suggest a response larger and more defined than that seen in some reconstructions. However, other 19th Century temperature compilations such Berkeley Earth show larger responses to Tambora – though there are spatial sampling issues there as well. There is also the potential for non-tree ring based reconstructions to provide independent confirmation of the magnitude of the response.

So while neither of the latest comments and responses provide a definitive answer to the principal problem, there is certainly lots of scope for extended and (hopefully) productive discussions.


  1. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures", Nature Geosci, vol. 5, pp. 202-205, 2012.
  2. K.J. Anchukaitis, P. Breitenmoser, K.R. Briffa, A. Buchwal, U. Büntgen, E.R. Cook, R.D. D'Arrigo, J. Esper, M.N. Evans, D. Frank, H. Grudd, B.E. Gunnarson, M.K. Hughes, A.V. Kirdyanov, C. Körner, P.J. Krusic, B. Luckman, T.M. Melvin, M.W. Salzer, A.V. Shashkin, C. Timmreck, E.A. Vaganov, and R.J.S. Wilson, "Tree rings and volcanic cooling", Nature Geosci, vol. 5, pp. 836-837, 2012.
  3. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Reply to 'Tree rings and volcanic cooling'", Nature Geosci, vol. 5, pp. 837-838, 2012.
  4. G.A. Schmidt, J.H. Jungclaus, C.M. Ammann, E. Bard, P. Braconnot, T.J. Crowley, G. Delaygue, F. Joos, N.A. Krivova, R. Muscheler, B.L. Otto-Bliesner, J. Pongratz, D.T. Shindell, S.K. Solanki, F. Steinhilber, and L.E.A. Vieira, "Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1)", Geosci. Model Dev., vol. 5, pp. 185-191, 2012.
  5. J. Hansen, M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G.A. Schmidt, G. Russell, I. Aleinov, S. Bauer, E. Baum, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Cohen, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, J. Jonas, M. Kelley, N.Y. Kiang, D. Koch, G. Labow, J. Lerner, S. Menon, T. Novakov, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, R. Schmunk, D. Shindell, P. Stone, S. Sun, D. Streets, N. Tausnev, D. Thresher, N. Unger, M. Yao, and S. Zhang, "Climate simulations for 1880–2003 with GISS modelE", Clim Dyn, vol. 29, pp. 661-696, 2007.
  6. P. Brohan, R. Allan, E. Freeman, D. Wheeler, C. Wilkinson, and F. Williamson, "Constraining the temperature history of the past millennium using early instrumental observations", Climate of the Past, vol. 8, pp. 1551-1563, 2012.

Switch to our mobile site