RealClimate logo

Climate response estimates from Lewis & Curry

Guest commentary from Richard Millar (U. Oxford)

The recent Lewis and Curry study of climate sensitivity estimated from the transient surface temperature record is being lauded as something of a game-changer – but how much of a game-changer is it really?

More »


  1. N. Lewis, and J.A. Curry, "The implications for climate sensitivity of AR5 forcing and heat uptake estimates", Climate Dynamics, vol. 45, pp. 1009-1023, 2014.

How much methane came out of that hole in Siberia?

Filed under: — david @ 13 August 2014

Siberia has explosion holes in it that smell like methane, and there are newly found bubbles of methane in the Arctic Ocean. As a result, journalists are contacting me assuming that the Arctic Methane Apocalypse has begun. However, as a climate scientist I remain much more concerned about the fossil fuel industry than I am about Arctic methane. Short answer: It would take about 20,000,000 such eruptions within a few years to generate the standard Arctic Methane Apocalypse that people have been talking about. Here’s where that statement comes from:
More »

A Bit More Sensitive…

Filed under: — mike @ 2 January 2014

by Michael E. Mann and Gavin Schmidt

This time last year we gave an overview of what different methods of assessing climate sensitivity were giving in the most recent analyses. We discussed the three general methods that can be used:

The first is to focus on a time in the past when the climate was different and in quasi-equilibrium, and estimate the relationship between the relevant forcings and temperature response (paleo-constraints). The second is to find a metric in the present day climate that we think is coupled to the sensitivity and for which we have some empirical data (climatological constraints). Finally, there are constraints based on changes in forcing and response over the recent past (transient constraints).

All three constraints need to be reconciled to get a robust idea what the sensitivity really is.

A new paper using the second ‘climatological’ approach by Steve Sherwood and colleagues was just published in Nature and like Fasullo and Trenberth (2012) (discussed here) suggests that models with an equilibrium climate sensitivity (ECS) of less than 3ºC do much worse at fitting the observations than other models.

More »


  1. S.C. Sherwood, S. Bony, and J. Dufresne, "Spread in model climate sensitivity traced to atmospheric convective mixing", Nature, vol. 505, pp. 37-42, 2014.
  2. J.T. Fasullo, and K.E. Trenberth, "A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity", Science, vol. 338, pp. 792-794, 2012.

Arctic and American Methane in Context

Filed under: — david @ 24 November 2013

Lots of interesting methane papers this week. In Nature Geoscience, Shakhova et al (2013) have published a substantial new study of the methane cycle on the Siberian continental margin of the Arctic Ocean. This paper will get a lot of attention, because it follows by a few months a paper from last summer, Whiteman et al (2013), which claimed a strong (and expensive) potential impact from Arctic methane on near-term climate evolution. That economic modeling study was based on an Arctic methane release scenario proposed in an earlier paper by Shakhova (2010). In PNAS, Miller et al (2013) find that the United States may be emitting 50-70% more methane than we thought. So where does this leave us?

More »


  1. N. Shakhova, I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy, and . Gustafsson, "Ebullition and storm-induced methane release from the East Siberian Arctic Shelf", Nature Geoscience, vol. 7, pp. 64-70, 2013.
  2. G. Whiteman, C. Hope, and P. Wadhams, "Climate science: Vast costs of Arctic change", Nature, vol. 499, pp. 401-403, 2013.
  3. N.E. Shakhova, V.A. Alekseev, and I.P. Semiletov, "Predicted methane emission on the East Siberian shelf", Doklady Earth Sciences, vol. 430, pp. 190-193, 2010.
  4. S.M. Miller, S.C. Wofsy, A.M. Michalak, E.A. Kort, A.E. Andrews, S.C. Biraud, E.J. Dlugokencky, J. Eluszkiewicz, M.L. Fischer, G. Janssens-Maenhout, B.R. Miller, J.B. Miller, S.A. Montzka, T. Nehrkorn, and C. Sweeney, "Anthropogenic emissions of methane in the United States", Proceedings of the National Academy of Sciences, vol. 110, pp. 20018-20022, 2013.

Simple physics and climate

Filed under: — rasmus @ 12 November 2013

No doubt, our climate system is complex and messy. Still, we can sometimes make some inferences about it based on well-known physical principles. Indeed, the beauty of physics is that a complex systems can be reduced into simple terms that can be quantified, and the essential aspects understood.

A recent paper by Sloan and Wolfendale (2013) provides an example where they derive a simple conceptual model of how the greenhouse effect works from first principles. They show the story behind the expression saying that a doubling in CO2 should increase the forcing by a factor of 1+log|2|/log|CO2|. I have a fondness for such simple conceptual models (e.g. I’ve made my own attempt posted at arXiv) because they provide a general picture of the essence – of course their precision is limited by their simplicity.

More »


  1. T. Sloan, and A.W. Wolfendale, "Cosmic rays, solar activity and the climate", Environmental Research Letters, vol. 8, pp. 045022, 2013.

Switch to our mobile site