• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Archives for Climate Science / Climate modelling

Climate modelling

Why bother trying to attribute extreme events?

20 Sep 2012 by Gavin

Nature has an interesting editorial this week on the state of the science for attributing extreme events. This was prompted by a workshop in Oxford last week where, presumably, strategies, observations and results were discussed by a collection of scientists interested in the topic (including Myles Allen, Peter Stott and other familiar names). Rather less usual was a discussion, referred to in the Nature piece, on whether the whole endeavour was scientifically worthwhile, and even if it was, whether it was of any use to anyone. The proponents of the ‘unscientific and pointless’ school of thought were not named and so one can’t immediately engage with them directly, but nonetheless the question is worthy of a discussion.

[Read more…] about Why bother trying to attribute extreme events?

Filed Under: Climate modelling, Climate Science

Arctic sea ice minimum 2012…

12 Aug 2012 by Gavin

By popular demand, a thread devoted to the continuing decline of Arctic sea ice, and a potential new record minimum this year. As before, the figures are hot-linked and will update day-by-day.

JAXA Sea ice extent:



Cryosphere Today sea ice concentration (interactive chart):



Estimated sea ice volume from UW PIOMAS (updated every month):



Other links: Tamino, the very informative and detailed Neven’s sea ice blog , and some interesting predictions from Gareth Renowden.

Filed Under: Arctic and Antarctic, Climate impacts, Climate modelling, Climate Science

My oh Miocene!

11 Jul 2012 by group

Guest commentary by Sarah Feakins

Our recent study in Nature Geoscience reconstructed conditions at the Antarctic coast during a warm period of Earth’s history. Today the Ross Sea has an ice shelf and the continent is ice covered; but we found the Antarctic coast was covered with tundra vegetation for some periods between 20 million and 15.5 million years ago. These findings are based on the isotopic composition of plant leaf waxes in marine sediments.

That temperatures were warm at that time was not a huge surprise; surprising, was how much warmer things were – up to 11ºC (20ºF) warmer at the Antarctic coast! We expected to see polar amplification, i.e. greater changes towards the poles as the planet warms. This study found those coastal temperatures to be as warm as 7ºC or 45ºF during the summer months. This is a surprise because conventional wisdom has tended to think of Antarctica being getting progressively colder since ice sheets first appeared on Antarctica 34 million years ago (but see Ruddiman (2010) for a good discussion of some of the puzzles).
[Read more…] about My oh Miocene!

References

  1. S.J. Feakins, S. Warny, and J. Lee, "Hydrologic cycling over Antarctica during the middle Miocene warming", Nature Geoscience, vol. 5, pp. 557-560, 2012. http://dx.doi.org/10.1038/NGEO1498
  2. W.F. Ruddiman, "A Paleoclimatic Enigma?", Science, vol. 328, pp. 838-839, 2010. http://dx.doi.org/10.1126/science.1188292

Filed Under: Arctic and Antarctic, Climate modelling, Climate Science, Oceans, Paleoclimate

OHC Model/Obs Comparison Errata

22 May 2012 by Gavin

This is just a brief note to point out that a few graphs that I have put together showing Ocean Heat Content changes in recent decades had an incorrect scaling for the GISS model data. My error was in assuming that the model output (which were in units W yr/m2) were scaled for the ocean area only, when in fact they were scaled for the entire global surface area (see fig. 2 in Hansen et al, 2005). Therefore, in converting to units of 1022 Joules for the absolute ocean heat content change, I had used a factor of 1.1 (0.7 x 5.1 x 365 x 3600 x 24 x 10-8), instead of the correct value of 1.61 (5.1 x 365 x 3600 x 24 x 10-8). This problem came to light while we were redoing this analysis for the CMIP5 models and from conversations with dana1981 at skepticalscience.com.

These graphs appeared in Dec 2009, May 2010, Jan 2011 and Feb 2012. In each case, I have replaced the graph with a corrected version while leaving a link to the incorrect version. Links to the figures will return the corrected image (and this is noted on the image itself). Where possible I used the data that were current at the time of the original post. Fortunately this only affects the figures used in these blog postings and not in any publications. Apologies for any confusion.

This figure shows the comparison using the most up-to-date observational products (NODC, PMEL):

The basic picture is unchanged – model simulations were able to capture the historical variance in OHC (as best we know it now – there remains significant structural uncertainty in those estimates). There are clear dips related volcanic eruptions (Agung, El Chichon, Pinatubo), and an sharp increase in the 1990s. Note that in GISS-EH (same AGCM but with a different ocean model) OHC increases at a slightly slower rate than seen with GISS-ER above. Looking at the last decade, it is clear that the observed rate of change of upper ocean heat content is a little slower than previously (and below linear extrapolations of the pre-2003 model output), and it remains unclear to what extent that is related to a reduction in net radiative forcing growth (due to the solar cycle, or perhaps larger than expected aerosol forcing growth), or internal variability, model errors, or data processing – arguments have been made for all four, singly and together.

Analyses of the CMIP5 models will provide some insight here since the historical simulations have been extended to 2012 (including the last solar minimum), and have updated aerosol emissions. Watch this space.

References

  1. J. Hansen, L. Nazarenko, R. Ruedy, M. Sato, J. Willis, A. Del Genio, D. Koch, A. Lacis, K. Lo, S. Menon, T. Novakov, J. Perlwitz, G. Russell, G.A. Schmidt, and N. Tausnev, "Earth's Energy Imbalance: Confirmation and Implications", Science, vol. 308, pp. 1431-1435, 2005. http://dx.doi.org/10.1126/science.1110252

Filed Under: Climate modelling, Climate Science, Oceans

Another fingerprint

20 May 2012 by rasmus

When my kids were younger, they asked me why the ocean was blue. I would answer that the ocean mirrors the blue sky. However, I would not think much more about it, even though it is well-known that the oceans represent the most important source for atmospheric moisture. They also play an important role for many types of internal variations, such as the El Nino Southern Oscillation. Now a new study by Durack et al. (2012) has been published in Science that presents the relationship between the oceans and the atmosphere.

[Read more…] about Another fingerprint

References

  1. P.J. Durack, S.E. Wijffels, and R.J. Matear, "Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000", Science, vol. 336, pp. 455-458, 2012. http://dx.doi.org/10.1126/science.1212222

Filed Under: Climate modelling, Climate Science, hydrological cycle, Oceans

Plugging the leaks

17 May 2012 by group

Guest commentary by Beate Liepert, NWRA

Clouds and water vapor accounts for only a tiny fraction of all water on Earth, but in spite of it, this moisture in the atmosphere is crucially important to replenishing drinking water reservoirs, crop yields, distribution of vegetation zones, and so on. This is the case because in the atmosphere, clouds and water vapor, transports a vast amount of water from oceans to land, where it falls out as precipitation. Scientists generally agree that rising temperatures in the coming decades will affect this cycling of water. And most climate models successfully simulate a global intensification of rainfall. However, physical models often disagree with observations and amongst themselves on the amount of the intensification, and global distribution of moisture that defines dry and wet regions.
[Read more…] about Plugging the leaks

Filed Under: Climate impacts, Climate modelling, Climate Science

Arctic Sea Ice Volume: PIOMAS, Prediction, and the Perils of Extrapolation

11 Apr 2012 by group

Guest Commentary by Axel Schweiger, Ron Lindsay, and Cecilia Bitz

We have just passed the annual maximum in Arctic sea ice extent which always occurs sometime in March. Within a month we will reach the annual maximum in Arctic sea ice volume. After that, the sea ice will begin its course towards its annual minimum of both extent and volume in mid-September. This marks the beginning of the ritual of the annual sea ice watch that includes predictions of the extent and rank of this year’s sea ice minimum, as well as discussion about the timing of its eventual demise. One of the inputs into that discussion is the “PIOMAS” ice-ocean model output of ice volume – and in particular, some high-profile extrapolations. This is worth looking at in some detail.

[Read more…] about Arctic Sea Ice Volume: PIOMAS, Prediction, and the Perils of Extrapolation

Filed Under: Arctic and Antarctic, Climate modelling, Climate Science

Evaluating a 1981 temperature projection

2 Apr 2012 by group

Guest commentary from Geert Jan van Oldenborgh and Rein Haarsma, KNMI

Sometimes it helps to take a step back from the everyday pressures of research (falling ill helps). It was in this way we stumbled across Hansen et al (1981) (pdf). In 1981 the first author of this post was in his first year at university and the other just entered the KNMI after finishing his masters. Global warming was not yet an issue at the KNMI where the focus was much more on climate variability, which explains why the article of Hansen et al. was unnoticed at that time by the second author. It turns out to be a very interesting read.
[Read more…] about Evaluating a 1981 temperature projection

References

  1. J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, "Climate Impact of Increasing Atmospheric Carbon Dioxide", Science, vol. 213, pp. 957-966, 1981. http://dx.doi.org/10.1126/science.213.4511.957

Filed Under: Climate modelling, Climate Science, Greenhouse gases, Instrumental Record

Bickmore on the WSJ response

24 Feb 2012 by group

Guest commentary from Barry Bickmore (repost)

The Wall Street Journal posted yet another op-ed by 16 scientists and engineers, which even include a few climate scientists(!!!). Here is the editor’s note to explain the context.

Editor’s Note: The authors of the following letter, listed below, are also the signatories of“No Need to Panic About Global Warming,” an op-ed that appeared in the Journal on January 27. This letter responds to criticisms of the op-ed made by Kevin Trenberth and 37 others in a letter published Feb. 1, and by Robert Byer of the American Physical Society in a letter published Feb. 6.

A relative sent me the article, asking for my thoughts on it. Here’s what I said in response.
[Read more…] about Bickmore on the WSJ response

Filed Under: Climate modelling, Climate Science, Instrumental Record, IPCC

2011 Updates to model-data comparisons

8 Feb 2012 by Gavin

And so it goes – another year, another annual data point. As has become a habit (2009, 2010), here is a brief overview and update of some of the most relevant model/data comparisons. We include the standard comparisons of surface temperatures, sea ice and ocean heat content to the AR4 and 1988 Hansen et al simulations.
[Read more…] about 2011 Updates to model-data comparisons

Filed Under: Climate modelling, Climate Science, El Nino, Greenhouse gases, Instrumental Record, Model-Obs Comparisons

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Interim pages omitted …
  • Page 24
  • Go to Next Page »

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • The most recent climate status
  • Unforced variations: May 2025
  • Unforced Variations: Apr 2025
  • WMO: Update on 2023/4 Anomalies
  • Andean glaciers have shrunk more than ever before in the entire Holocene
  • Climate change in Africa

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • William on Unforced variations: May 2025
  • Jim Hunt on Unforced variations: May 2025
  • Tomáš Kalisz on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Secular Animist on Unforced variations: May 2025
  • Susan Anderson on Unforced variations: May 2025
  • Barton Paul Levenson on Unforced variations: May 2025
  • Karsten V. Johansen on The most recent climate status
  • Scott Nudds on Unforced variations: May 2025
  • Scott Nudds on Unforced variations: May 2025
  • Scott Nudds on Unforced variations: May 2025
  • Thiemo Kellner on The most recent climate status
  • Harri Hirvensarvi on The most recent climate status
  • Dr Gareth John Evans on The most recent climate status
  • Poor Peru on The most recent climate status
  • Poor Peru on The most recent climate status

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,365 posts

11 pages

243,091 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.