• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Archives for Climate Science / Climate modelling

Climate modelling

Should regional climate models take the blame?

6 Apr 2013 by rasmus

Kerr (2013) recently provided a critical review of regional climate models (“RCMs”). I think his views have caused a stir in the regional climate model community. So what’s the buzz all about?

RCMs provide important input to many climate services, for which there is a great deal of vested interest on all levels. On the international stage, high-level talks lead to the establishment of a Global Framework for Climate Services (GFCS) during the World Climate Conference 3 (WCC3) in Geneva 2009.

[Read more…] about Should regional climate models take the blame?

References

  1. R.A. Kerr, "Forecasting Regional Climate Change Flunks Its First Test", Science, vol. 339, pp. 638-638, 2013. http://dx.doi.org/10.1126/science.339.6120.638

Filed Under: Climate impacts, Climate modelling, Climate Science, Reporting on climate, statistics

2012 Updates to model-observation comparisons

7 Feb 2013 by Gavin

Time for the 2012 updates!

As has become a habit (2009, 2010, 2011), here is a brief overview and update of some of the most discussed model/observation comparisons, updated to include 2012. I include comparisons of surface temperatures, sea ice and ocean heat content to the CMIP3 and Hansen et al (1988) simulations.
[Read more…] about 2012 Updates to model-observation comparisons

Filed Under: Aerosols, Arctic and Antarctic, Climate modelling, Climate Science, El Nino, Greenhouse gases, Instrumental Record, Model-Obs Comparisons

On Sensitivity Part II: Constraining Cloud Feedback without Cloud Observations

4 Jan 2013 by group

Guest Commentary by Karen M. Shell, Oregon State University

Link to Part I.

Clouds are very pesky for climate scientists. Due to their high spatial and temporal variability, as well as the many processes involved in cloud droplet formation, clouds are difficult to model. Furthermore, clouds have competing effects on solar and terrestrial radiation. Increases in clouds increase reflected sunlight (a cooling effect) but also increase the greenhouse effect (a warming effect). The net effect of clouds at a given location depends the kind of clouds (stratus, cumulus etc.), their distribution in the vertical and on which radiative effect dominates.

Not only is it difficult to correctly represent clouds in climate models, but estimating how clouds and their radiative effects will change with global warming (i.e., the cloud feedback) is very difficult. Other physical feedbacks have more obvious links between temperature and the climate variable. For example, we expect and have strong evidence for the increase in water vapor in a warmer climate due to the increased saturation specific humidity, or the reduced reflection of sunlight due to the melting of snow and ice at higher temperature. However, there isn’t a simple thermodynamic relationship between temperature and cloud amount, and the complexities in the radiative impacts of clouds mean that an increase in clouds in one location may result in net heating, but would correspond to a cooling elsewhere. Thus, most of the uncertainty in the response of climate models to increases in CO2 is due to the uncertainty of the cloud feedback.

So how cool is it then that the recent paper by Fasullo and Trenberth estimates the net climate sensitivity without getting into the details of the cloud feedback then? Quite cool.
[Read more…] about On Sensitivity Part II: Constraining Cloud Feedback without Cloud Observations

References

  1. J.T. Fasullo, and K.E. Trenberth, "A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity", Science, vol. 338, pp. 792-794, 2012. http://dx.doi.org/10.1126/science.1227465

Filed Under: Climate modelling, Climate Science

On sensitivity: Part I

3 Jan 2013 by Gavin

Climate sensitivity is a perennial topic here, so the multiple new papers and discussions around the issue, each with different perspectives, are worth discussing. Since this can be a complicated topic, I’ll focus in this post on the credible work being published. There’ll be a second part from Karen Shell, and in a follow-on post I’ll comment on some of the recent games being played in and around the Wall Street Journal op-ed pages.

[Read more…] about On sensitivity: Part I

Filed Under: Aerosols, Climate modelling, Climate Science, IPCC, Paleoclimate

Some AGU highlights

8 Dec 2012 by Gavin

Here a few of the videos of the named lectures from last week that are worth watching. There are loads more videos from selected sessions on the AGU Virtual Meeting site (the AGU YouTube channel has quite a lot more from past meetings too).

All well worth the time.

[Read more…] about Some AGU highlights

Filed Under: Aerosols, Arctic and Antarctic, Climate impacts, Climate modelling, Climate Science

Responses to volcanoes in tree rings and models

29 Nov 2012 by Gavin

Houston, we have a problem.

Admittedly, not a huge problem and not one that most people, or even most climatologists, are particularly fascinated by, but one which threads together many topics (climate models, tree rings, paleo-climate) which have been highlighted here in the past. The problem is that we have good evidence in the ice core records for very large tropical eruptions over the last 1000 years – in particular the eruptions in 1258/1259, 1452 and 1809 to 1815 – but for which many paleo-reconstructions barely show a blip in temperature. Models, in attempting to simulate this period, show varied but generally larger (and sometimes much larger) responses. The differences are significant enough to have prompted a few people to try and look into why this mismatch is occurring.

Whenever there is a mismatch between model and observation, there are, roughly speaking, at least three (non-exclusive) possibilities: the model is wrong, the observational data are wrong or the comparison is not like-with-like. There have been many examples of resolved mismatches in each category so all possibilities need to be looked at.

As described in a previous post earlier this year, Mann et al., 2012 (pdf), postulated that for extreme volcanoes, the cooling would be sufficient to saturate the growth response, and that some trees might `skip´ a ring for that year leading to a slight slippage in tree-ring dating, a potential smearing of the composite chronologies, and a further underestimate of the cooling in tree-ring based large-scale reconstructions.

This hypothesis has now been challenged by a group of authors in a comment (Anchukaitis et al.) (pdf, SI, code), who focus on the appropriateness of the tree ring growth model and the spatial pattern the volcanic climate responses. The Mann et al. response (pdf, SI) presents some further modeling and 19th century observational data in support of the original hypothesis.

Of course, there are still two other possibilities to consider. First, the models may have an excessive response. This could be due to either models responding excessively to the correct forcing, or could be related to an excessive forcing itself. There are indeed some important uncertainties in estimating the history of volcanic forcing – which involves inferring a stratospheric aerosol load (and effective radius of the particles and their distribution) from a network of sulphate peaks in ice cores in Greenland and Antarctica. For example, the forcing for the big eruption around 1453 differs by a factor of 2 in the inferred forcing (-12 W/m2 and -5.4 W/m2) in the two estimates proposed for the recent model-intercomparison (Schmidt et al., 2012). Note too that the details of how aerosols are implemented in any specific model can also make a difference to the forcing, and there are many (as yet untested) assumptions built into the forcing reconstructions.

It is also conceivable that climate models overreact to volcanic forcing – however, excellent matches to the Pinatubo response in temperature, radiative anomalies, water vapour and dynamic responses, where we know the volcanic aerosol load well, make that tricky to support (Hansen et al, 2007) (pdf, SI). (As an aside, the suggestion in this paper that the response to Krakatoa (1883) was underpredicted by the historical SST fields was partially vindicated by the results from HadSST3 which showed substantially more cooling).

The third possibility is that some tree-ring reconstructions can’t be easily compared to simple temperature averages from the models. As both the original paper and the comment suggests, there are important effects from memory from previous years in ring widths and, potentially, increases in diffuse light post-eruption promoting growth spurts. This needs to be assessed using more sophisticated forward models for tree ring growth applied to the models’ output – a feature in both the Mann et al, and Anchukaitis et al. approaches. More work is likely needed on this, and using the wider variety of model experiments coming out of CMIP5/PMIP3.

There is clearly potential for these competing hypotheses to get sorted out. Information from newly-digitised old instrumental records in the early 19th Century such as shipping records for the East India Company (Brohan et al, 2012), doesn’t support the largest modelled responses to Tambora (1815), but does suggest a response larger and more defined than that seen in some reconstructions. However, other 19th Century temperature compilations such Berkeley Earth show larger responses to Tambora – though there are spatial sampling issues there as well. There is also the potential for non-tree ring based reconstructions to provide independent confirmation of the magnitude of the response.

So while neither of the latest comments and responses provide a definitive answer to the principal problem, there is certainly lots of scope for extended and (hopefully) productive discussions.

References

  1. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures", Nature Geoscience, vol. 5, pp. 202-205, 2012. http://dx.doi.org/10.1038/ngeo1394
  2. K.J. Anchukaitis, P. Breitenmoser, K.R. Briffa, A. Buchwal, U. Büntgen, E.R. Cook, R.D. D'Arrigo, J. Esper, M.N. Evans, D. Frank, H. Grudd, B.E. Gunnarson, M.K. Hughes, A.V. Kirdyanov, C. Körner, P.J. Krusic, B. Luckman, T.M. Melvin, M.W. Salzer, A.V. Shashkin, C. Timmreck, E.A. Vaganov, and R.J.S. Wilson, "Tree rings and volcanic cooling", Nature Geoscience, vol. 5, pp. 836-837, 2012. http://dx.doi.org/10.1038/ngeo1645
  3. M.E. Mann, J.D. Fuentes, and S. Rutherford, "Reply to 'Tree rings and volcanic cooling'", Nature Geoscience, vol. 5, pp. 837-838, 2012. http://dx.doi.org/10.1038/ngeo1646
  4. G.A. Schmidt, J.H. Jungclaus, C.M. Ammann, E. Bard, P. Braconnot, T.J. Crowley, G. Delaygue, F. Joos, N.A. Krivova, R. Muscheler, B.L. Otto-Bliesner, J. Pongratz, D.T. Shindell, S.K. Solanki, F. Steinhilber, and L.E.A. Vieira, "Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1)", Geoscientific Model Development, vol. 5, pp. 185-191, 2012. http://dx.doi.org/10.5194/gmd-5-185-2012
  5. J. Hansen, M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G.A. Schmidt, G. Russell, I. Aleinov, S. Bauer, E. Baum, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Cohen, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, J. Jonas, M. Kelley, N.Y. Kiang, D. Koch, G. Labow, J. Lerner, S. Menon, T. Novakov, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, R. Schmunk, D. Shindell, P. Stone, S. Sun, D. Streets, N. Tausnev, D. Thresher, N. Unger, M. Yao, and S. Zhang, "Climate simulations for 1880–2003 with GISS modelE", Climate Dynamics, vol. 29, pp. 661-696, 2007. http://dx.doi.org/10.1007/s00382-007-0255-8
  6. P. Brohan, R. Allan, E. Freeman, D. Wheeler, C. Wilkinson, and F. Williamson, "Constraining the temperature history of the past millennium using early instrumental observations", Climate of the Past, vol. 8, pp. 1551-1563, 2012. http://dx.doi.org/10.5194/cp-8-1551-2012

Filed Under: Climate modelling, Climate Science, Paleoclimate

Stronger regional differences due to large-scale atmospheric flow.

20 Nov 2012 by rasmus

A new paper by Deser et al. (2012) (free access) is likely to have repercussions on discussions of local climate change adaptation. I think it caught some people by surprise, even if the results perhaps should not be so surprising. The range of possible local and regional climate outcomes may turn out to be larger than expected for regions such as North America and Europe.

Deser et al. imply that information about the future regional climate is more blurred than previously anticipated because of large-scale atmospheric flow responsible for variations in regional climates. They found that regional temperatures and precipitation for the next 50 years may be less predictable due to the chaotic nature of the large-scale atmospheric flow. This has implications for climate change downscaling and climate change adaptation, and suggests a need to anticipate a wider range of situations in climate risk analyses.

Although it has long been recognised that large-scale circulation regimes affect seasonal, inter-annual climate, and decadal variations, the expectations have been that anthropogenic climate changes will dominate on time scales longer than 50 years. For instance, an influential analysis by Hawking & Sutton (2009) (link to figures) has suggested that internal climate variability account for only about 20% of the variance over the British isles on a 50-year time scale.
[Read more…] about Stronger regional differences due to large-scale atmospheric flow.

References

  1. C. Deser, R. Knutti, S. Solomon, and A.S. Phillips, "Communication of the role of natural variability in future North American climate", Nature Climate Change, vol. 2, pp. 775-779, 2012. http://dx.doi.org/10.1038/nclimate1562
  2. E. Hawkins, and R. Sutton, "The Potential to Narrow Uncertainty in Regional Climate Predictions", Bulletin of the American Meteorological Society, vol. 90, pp. 1095-1108, 2009. http://dx.doi.org/10.1175/2009BAMS2607.1

Filed Under: Climate impacts, Climate modelling, Climate Science, Communicating Climate, Reporting on climate, statistics

Why bother trying to attribute extreme events?

20 Sep 2012 by Gavin

Nature has an interesting editorial this week on the state of the science for attributing extreme events. This was prompted by a workshop in Oxford last week where, presumably, strategies, observations and results were discussed by a collection of scientists interested in the topic (including Myles Allen, Peter Stott and other familiar names). Rather less usual was a discussion, referred to in the Nature piece, on whether the whole endeavour was scientifically worthwhile, and even if it was, whether it was of any use to anyone. The proponents of the ‘unscientific and pointless’ school of thought were not named and so one can’t immediately engage with them directly, but nonetheless the question is worthy of a discussion.

[Read more…] about Why bother trying to attribute extreme events?

Filed Under: Climate modelling, Climate Science

Arctic sea ice minimum 2012…

12 Aug 2012 by Gavin

By popular demand, a thread devoted to the continuing decline of Arctic sea ice, and a potential new record minimum this year. As before, the figures are hot-linked and will update day-by-day.

JAXA Sea ice extent:



Cryosphere Today sea ice concentration (interactive chart):



Estimated sea ice volume from UW PIOMAS (updated every month):



Other links: Tamino, the very informative and detailed Neven’s sea ice blog , and some interesting predictions from Gareth Renowden.

Filed Under: Arctic and Antarctic, Climate impacts, Climate modelling, Climate Science

My oh Miocene!

11 Jul 2012 by group

Guest commentary by Sarah Feakins

Our recent study in Nature Geoscience reconstructed conditions at the Antarctic coast during a warm period of Earth’s history. Today the Ross Sea has an ice shelf and the continent is ice covered; but we found the Antarctic coast was covered with tundra vegetation for some periods between 20 million and 15.5 million years ago. These findings are based on the isotopic composition of plant leaf waxes in marine sediments.

That temperatures were warm at that time was not a huge surprise; surprising, was how much warmer things were – up to 11ºC (20ºF) warmer at the Antarctic coast! We expected to see polar amplification, i.e. greater changes towards the poles as the planet warms. This study found those coastal temperatures to be as warm as 7ºC or 45ºF during the summer months. This is a surprise because conventional wisdom has tended to think of Antarctica being getting progressively colder since ice sheets first appeared on Antarctica 34 million years ago (but see Ruddiman (2010) for a good discussion of some of the puzzles).
[Read more…] about My oh Miocene!

References

  1. S.J. Feakins, S. Warny, and J. Lee, "Hydrologic cycling over Antarctica during the middle Miocene warming", Nature Geoscience, vol. 5, pp. 557-560, 2012. http://dx.doi.org/10.1038/NGEO1498
  2. W.F. Ruddiman, "A Paleoclimatic Enigma?", Science, vol. 328, pp. 838-839, 2010. http://dx.doi.org/10.1126/science.1188292

Filed Under: Arctic and Antarctic, Climate modelling, Climate Science, Oceans, Paleoclimate

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Interim pages omitted …
  • Page 24
  • Go to Next Page »

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Unforced variations: Oct 2025
  • “But you said the ice was going to disappear in 10 years!”
  • Time and Tide Gauges wait for no Voortman
  • Lil’ NAS Express
  • DOE CWG Report “Moot”?
  • Climate Scientists response to DOE report

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • Geoff Miell on Unforced variations: Oct 2025
  • Mo Yunus on “But you said the ice was going to disappear in 10 years!”
  • Piotr on “But you said the ice was going to disappear in 10 years!”
  • Piotr on “But you said the ice was going to disappear in 10 years!”
  • Piotr on “But you said the ice was going to disappear in 10 years!”
  • Tomáš Kalisz on Unforced variations: Oct 2025
  • Mo Yunus on “But you said the ice was going to disappear in 10 years!”
  • Mal Adapted on “But you said the ice was going to disappear in 10 years!”
  • Tomáš Kalisz on “But you said the ice was going to disappear in 10 years!”
  • nigelj on Unforced variations: Oct 2025
  • Tomáš Kalisz on Unforced variations: Oct 2025
  • Russell Seitz on “But you said the ice was going to disappear in 10 years!”
  • Kevin McKinney on “But you said the ice was going to disappear in 10 years!”
  • Kevin McKinney on Unforced variations: Oct 2025
  • Kevin McKinney on “But you said the ice was going to disappear in 10 years!”
  • MA Rodger on Unforced variations: Oct 2025
  • MA Rodger on Unforced variations: Oct 2025
  • MA Rodger on Unforced variations: Oct 2025
  • Barton Paul Levenson on Unforced variations: Oct 2025
  • Barton Paul Levenson on “But you said the ice was going to disappear in 10 years!”
  • Silvia Leahu-Aluas on Unforced variations: Oct 2025
  • Pete best on “But you said the ice was going to disappear in 10 years!”
  • Susan Anderson on “But you said the ice was going to disappear in 10 years!”
  • Mo Yunus on Unforced variations: Oct 2025
  • Geoff Miell on Unforced variations: Oct 2025
  • Russell Seitz on “But you said the ice was going to disappear in 10 years!”
  • Mo Yunus on “But you said the ice was going to disappear in 10 years!”
  • Mo Yunus on “But you said the ice was going to disappear in 10 years!”
  • Mo Yunus on “But you said the ice was going to disappear in 10 years!”
  • Piotr on Unforced variations: Oct 2025

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,383 posts

11 pages

247,251 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.