• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

RealClimate

Climate science from climate scientists...

  • Start here
  • Model-Observation Comparisons
  • Miscellaneous Climate Graphics
  • Surface temperature graphics
You are here: Home / Archives for Climate Science

Climate Science

Turning a new page[s]

4 Jun 2023 by Gavin

The world is full of climate dashboards (and dashboards of dashboards), and so you might imagine that all datasets and comparisons are instantly available in whatever graphical form you like. Unfortunately, we often want graphics to emphasize a particular point or comparison, and generic graphs from the producers of the data often don’t have the same goal in mind. Dashboards that allow for more flexibility (like WoodForTrees) are useful, but aren’t as visually appealing as they could be. Thus, I find myself creating bespoke graphics of climate and climate model data all the time.

Some of these are maintained on the Climate model-observations comparison page but many of the graphs that I make (often to make a point on twitter) aren’t saved there and often their provenance is a bit obscure. Given that twitter will not last forever (though it might be around for slightly longer than a head of lettuce), it’s probably useful to have a spot to upload these graphics to, along with some explanation, to serve as a reference.

I have therefore created a couple of ‘pages’ (in wordpress speak) with fixed URLs where I will be curating relevant graphics I make (and findable at the bottom of the page under “DATA AND GRAPHICS”). The first is focused on the surface temperature records. I often update relevant graphics associated with this in early January (when we get another dot on the graphs), but there are associated graphs that I’ve made that don’t make it into those updates, so this is a place for them too. This includes the impacts of ENSO, comparisons across different platforms, or the impact of homogenization.

Comparison of four instrumental records which all coherently show warming since 1880.

The second page is bit more eclectic. These are graphs that are relevant to some trope or talking point that often pops up, and my graphs are an attempt to provide context (usually), or to debunk it entirely. This is where you’ll find maps of where the climate is warming faster than the global average, time-series of river ice break-up dates, and an example of sensible scaling of CO2 changes and temperature.

Map showing all the areas where trends from 1971-2022 are greater than the global mean trend. Almost all of the northern hemisphere landmass, and much of the SH land too.

To start with, I’m just going to upload some graphs I’ve made recently (with any updates that are needed), and I’ll add content as I make something new. If there are any other ideas (that aren’t too involved!), I’ll be happy to look at adding those too. Let me know if this is useful.

Filed Under: Climate impacts, Climate Science, Communicating Climate, El Nino, Featured Story, Instrumental Record Tagged With: climate dashboard

Unforced Variations: Jun 2023

2 Jun 2023 by group

This month’s open thread on climate topics.

Filed Under: Climate Science, Open thread, Solutions

Evaluation of GCM simulations with a regional focus.

31 May 2023 by rasmus

Do the global climate models (GCMs) we use for describing future climate change really capture the change and variations in the region that we want to study? There are widely used tools for evaluating global climate models, such as the ESMValTool, but they don’t provide the answers that I seek.

I use GCMs to provide information about large-scale conditions, processes and phenomena in the atmosphere that I can use as predictors in downscaling future climate projections. I also want to know whether the ensemble of GCM simulations that I use provides representative statistics of the actual regional climate I’m interested in. 

[Read more…] about Evaluation of GCM simulations with a regional focus.

Filed Under: Climate modelling, Climate Science, Featured Story, statistics Tagged With: CMIP5, CMIP6

CMIP6: Not-so-sudden stratospheric cooling

21 May 2023 by Gavin

As predicted in 1967 by Manabe and Wetherald, the stratosphere has been cooling.

A new paper by Ben Santer and colleagues has appeared in PNAS where they extend their previous work on the detection and attribution of anthropogenic climate change to include the upper stratosphere, using observations from the Stratospheric Sounding Units (SSUs) (and their successors, the AMSU instruments) that have flown since 1979.

[Read more…] about CMIP6: Not-so-sudden stratospheric cooling

References

  1. B.D. Santer, S. Po-Chedley, L. Zhao, C. Zou, Q. Fu, S. Solomon, D.W.J. Thompson, C. Mears, and K.E. Taylor, "Exceptional stratospheric contribution to human fingerprints on atmospheric temperature", Proceedings of the National Academy of Sciences, vol. 120, 2023. http://dx.doi.org/10.1073/pnas.2300758120

Filed Under: Climate modelling, Climate Science, Featured Story, Greenhouse gases, Instrumental Record, Sun-earth connections Tagged With: CMIP6, SSU

Unforced variations: May 2023

1 May 2023 by group

This month’s open thread on climate topics. Please be succinct, courteous and on point.

Filed Under: Climate Science, Open thread, Solutions

A NOAA-STAR dataset is born…

23 Apr 2023 by Gavin

What does a new entrant in the lower troposphere satellite record stakes really imply?

At the beginning of the year, we noted that the NOAA-STAR group had produced a new version (v5.0) of their MSU TMT satellite retrievals which was quite a radical departure from the previous version (4.1). It turns out that v5 has a notable lower trend than v4.1, which had the highest trend among the UAH and RSS retrievals. The paper describing the new version (Zou et al., 2023) came out in March, and with it the availability of not only updated TMT and TLS records (which had existed in the version 4.1), but also a new TLT (Temperature of the Lower Troposphere) record (from 1981 to present). The updated TMT series was featured in the model data comparison already, but we haven’t yet shown the new TLT data in context.

[Read more…] about A NOAA-STAR dataset is born…

References

  1. C. Zou, H. Xu, X. Hao, and Q. Liu, "Mid‐Tropospheric Layer Temperature Record Derived From Satellite Microwave Sounder Observations With Backward Merging Approach", Journal of Geophysical Research: Atmospheres, vol. 128, 2023. http://dx.doi.org/10.1029/2022JD037472

Filed Under: Climate Science, Featured Story, Instrumental Record Tagged With: AMSU, climate change, MSU, NOAA STAR, RSS, UAH

The summary for policymakers of the Intergovernmental Panel on Climate Change sixth assessment reports synthesis

7 Apr 2023 by rasmus

The summary for policymakers of the Intergovernmental Panel on Climate Change (IPCC) sixth synthesis report was released on March 20th (available online as a PDF). There is a recording of the IPCC Press Conference – Climate Change 2023: Synthesis Report for those who are interested in watching an awkward release of the report.

It strikes me that the IPCC perhaps assumes that everyone is climate literate and are up to speed on climate change. While many journalists clearly got the message, expressed through news reports though e.g. the Guardian and Washington Post, I doubt that relevant leaders were swayed. One problem may be that journalists do not carry as much weight as scientists. 

[Read more…] about The summary for policymakers of the Intergovernmental Panel on Climate Change sixth assessment reports synthesis

Filed Under: Climate Science, Communicating Climate, IPCC

Unforced Variations: Apr 2023

1 Apr 2023 by group

This month’s open thread on climate topics (no joke).

Filed Under: Climate Science, Open thread

Some new CMIP6 MSU comparisons

16 Mar 2023 by Gavin

We add some of the CMIP6 models to the updateable MSU [and SST] comparisons.

After my annual update, I was pointed to some MSU-related diagnostics for many of the CMIP6 models (24 of them at least) from Po-Chedley et al. (2022) courtesy of Ben Santer. These are slightly different to what we have shown for CMIP5 in that the diagnostic is the tropical corrected-TMT (following Fu et al., 2004) which is a better representation of the mid-troposphere than the classic TMT diagnostic through an adjustment using the lower stratosphere record (i.e. TMT_{corr} = 1.1 TMT - 0.1 TLS).

[Read more…] about Some new CMIP6 MSU comparisons

References

  1. S. Po-Chedley, J.T. Fasullo, N. Siler, Z.M. Labe, E.A. Barnes, C.J.W. Bonfils, and B.D. Santer, "Internal variability and forcing influence model–satellite differences in the rate of tropical tropospheric warming", Proceedings of the National Academy of Sciences, vol. 119, 2022. http://dx.doi.org/10.1073/pnas.2209431119
  2. Q. Fu, C.M. Johanson, S.G. Warren, and D.J. Seidel, "Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends", Nature, vol. 429, pp. 55-58, 2004. http://dx.doi.org/10.1038/nature02524

Filed Under: Climate modelling, Climate Science, Featured Story, Instrumental Record, Model-Obs Comparisons Tagged With: CMIP6, Corrected-TMT, MSU

How not to science

5 Mar 2023 by Gavin

A trip down memory lane and a lesson on scientific integrity.

I had reason to be reviewing the history of MSU satellite retrievals for atmospheric temperatures recently. It’s a fascinating story of technology, creativity, hubris, error, imagination, rivalry, politics, and (for some) a search for scientific consilience – worthy of movie script perhaps? – but I want to highlight a minor little thing. Something so small that I’d never noticed it before, and I don’t recall anyone else pointing it out, but it is something I find very telling.

The story starts in the early 90’s, but what caught my eye was a single line in an op-ed (sub. req.) written two decades later:

… in 1994 we published an article in the journal Nature showing that the actual global temperature trend was “one-quarter of the magnitude of climate model results.”McNider and Christy, Feb 19th 2014, Wall Street Journal

Most of the op-ed is a rather tired rehash of faux outrage based on a comment made by John Kerry (the then Secretary of State) and we can skip right past that. It’s only other claim of note is a early outing of John Christy’s misleading graphs comparing the CMIP5 models to the satellite data but we’ll get back to that later.

First though, let’s dig into that line. The 1994 article is a short correspondence piece in Nature, where Christy and McNider analyzed MSU2R lower troposphere dataset and using ENSO and stratospheric volcanic effects to derive an ‘underlying’ global warming trend of 0.09 K/decade. This was to be compared with “warming rates of 0.3 to 0.4 K/decade” from models which was referenced to Manabe et al. (1991) and Boer et al. (1992). Hence the “one quarter” claim.

But lets dig deeper into each of those elements in turn. First, 1994 was pretty early on in terms of MSU science. The raw trend in the (then Version C) MSU2R record from 1979-1993 was -0.04 K/decade. [Remember ‘satellite cooling’?]. This was before Wentz and Schabel (1998) pointed out that orbital decay in the NOAA satellites was imparting a strong cooling bias (about 0.12 K/decade) on the MSU2R (TLT) record. Secondly, the two cited modeling papers don’t actually give an estimated warming trends for the 1980s and early 90s. The first is a transient model run using a canonical 1% increasing CO<sub>2</sub> – a standard experiment, but not one intended to match the real world growth of CO2 concentrations. The second model study is a simple equilibrium 2xCO2 run with the Canadian climate model, and does not report relevant transient warming rates at all. This odd referencing was pointed out in correspondence with Spencer and Christy by Hansen et al. (1995) who also noted that underlying model SAT trends for the relevant period were expected to be more like 0.1-0.15 K/decade. So the claim that the MSU temperatures were warming at “one quarter” the rate of the models wasn’t even valid in 1994. They might have more credibly claimed “two thirds” the rate, but the uncertainties are such that no such claim would have been robust (for instance, just the uncertainties on the linear regression alone are ~ +/-0.14 K/dec).

This image has an empty alt attribute; its file name is mcnider55-253x600.png
Replication of the Christy and McNider calculation and figure from 1994 but using the UAH v5.5 data.

But it gets worse. In 2014, McNider and Christy were well aware of the orbital decay correction (1998), and they were even aware of the diurnal drift correction that was needed because of a sign error introduced while trying to fix the orbital decay issue (discovered in 2005). The version of the MSU2R product at the beginning of 2014 was version 5.5, and that had a raw trend of -0.01 K/decade 1979-1993 (+/- 0.18 K/dec 95% CI, natch). Using an analogous methodology to that used in 1994 (see figure to the right), the underlying linear trend after accounting for ENSO and volcanic aerosols was…. 0.15 K/dec! Almost identical to the expected trend from models!

So not only was their original claim incorrect at the time, but had they repeated the analysis in 2014, their own updated data and method would have shown that there was no discrepancy at all.

Now in 2014, there was a longer record and more suitable models to compare to. Models had been run with appropriate volcanic forcings and in large enough ensembles that there was a quantified spread of expected trends. Comparisons could now be done in a more sophisticated away, that compared like with like and took account of many different elements of uncertainty (forcings, weather, structural effects in models and observations etc.). But McNider and Christy chose not to do that.

Instead, they chose to hide the structural uncertainty in the MSU retrievals (the TMT trends for 1979-2013 in UAH v5.5 and RSS v3.3 were 0.04 and 0.08 +/- 0.05 K/dec respectively – a factor of two different!), and ignore the spread in the CMIP5 models TMT trends [0.08,0.36] and graph it in a way as to maximise the visual disparity in a frankly misleading way. Additionally, they decided to highlight the slower warming TMT records instead of the TLT record they had discussed in 1994. For contrast, the UAH v5.5 TLT trends for 1979-2013 were 0.14± 0.05 K/dec.

But all these choices were made in the service of rhetoric, not science, to suggest that models are, and had always been, wrong, and that the UAH MSU data had always been right. A claim moreover that is totally backwards.

Richard Feynman often spoke about a certain kind of self-critical integrity as being necessary to do credible science. That kind of integrity was in very short supply in this op-ed.

References

  1. J.R. Christy, and R.T. McNider, "Satellite greenhouse signal", Nature, vol. 367, pp. 325-325, 1994. http://dx.doi.org/10.1038/367325a0
  2. F.J. Wentz, and M. Schabel, "Effects of orbital decay on satellite-derived lower-tropospheric temperature trends", Nature, vol. 394, pp. 661-664, 1998. http://dx.doi.org/10.1038/29267
  3. J. Hansen, H. Wilson, M. Sato, R. Ruedy, K. Shah, and E. Hansen, "Satellite and surface temperature data at odds?", Climatic Change, vol. 30, pp. 103-117, 1995. http://dx.doi.org/10.1007/BF01093228

Filed Under: Climate modelling, Climate Science, Featured Story, Instrumental Record, Scientific practice Tagged With: John Christy, MSU, Satellite temperature

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Interim pages omitted …
  • Page 127
  • Go to Next Page »

Primary Sidebar

Search

Search for:

Email Notification

get new posts sent to you automatically (free)
Loading

Recent Posts

  • Unforced variations: May 2025
  • Unforced Variations: Apr 2025
  • WMO: Update on 2023/4 Anomalies
  • Andean glaciers have shrunk more than ever before in the entire Holocene
  • Climate change in Africa
  • We need NOAA now more than ever

Our Books

Book covers
This list of books since 2005 (in reverse chronological order) that we have been involved in, accompanied by the publisher’s official description, and some comments of independent reviewers of the work.
All Books >>

Recent Comments

  • Vulnerability to Blackouts on Unforced variations: May 2025
  • Vulnerability to Blackouts on Unforced variations: May 2025
  • Vulnerability to Blackouts on Unforced variations: May 2025
  • Tomáš Kalisz on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Kevin McKinney on Unforced variations: May 2025
  • Pete best on Unforced variations: May 2025
  • Jim Hunt on Unforced variations: May 2025
  • Barton Paul Levenson on Unforced variations: May 2025
  • Barton Paul Levenson on Unforced variations: May 2025
  • Adam Lea on Unforced variations: May 2025
  • Mr. Know It All on Unforced variations: May 2025
  • Piotr on Unforced variations: May 2025
  • Paul Pukite (@whut) on Unforced variations: May 2025
  • William on Unforced variations: May 2025
  • The Prieto Principle on Unforced variations: May 2025

Footer

ABOUT

  • About
  • Translations
  • Privacy Policy
  • Contact Page
  • Login

DATA AND GRAPHICS

  • Data Sources
  • Model-Observation Comparisons
  • Surface temperature graphics
  • Miscellaneous Climate Graphics

INDEX

  • Acronym index
  • Index
  • Archives
  • Contributors

Realclimate Stats

1,364 posts

11 pages

242,938 comments

Copyright © 2025 · RealClimate is a commentary site on climate science by working climate scientists for the interested public and journalists.