RealClimate logo


Cracking the Climate Change Case

I have an op-ed in the New York Times this week:

How Scientists Cracked the Climate Change Case
The biggest crime scene on the planet is the planet. We know the earth is warming, but who or what is causing it?
Emilia Miękisz

Many of you will recognise the metaphor from previous Realclimate pieces (this is earliest one I think, from 2007), and indeed, the working title was “CSI: Planet Earth”. The process description and conclusions are drawn from multiple sources on the attribution of recent climate trends (here, here etc.), as well the data visualization for surface temperature trends at Bloomberg News.

There have been many comments about this on Twitter – most appreciative, some expected, and a few interesting. The expected criticisms come from people who mostly appear not to have read the piece at all (“Climate has changed before!” – a claim that no-one disputes), and a lot of pointless counter-arguments by assertion. Of the more interesting comment threads, was one started by Ted Nordhaus who asked

My response is basically that it might be old hat for him (and maybe many readers here), but I am constantly surprised at the number of people – even those concerned about climate – who are unaware of how we do attribution and how solid the science behind the IPCC statements is. And judging by many of the comments, it certainly isn’t the case that these pieces are only read by the already convinced. But asking how many people are helped to be persuaded by articles like this is a valid question, and I don’t really know the answer. Anyone?

Model Independence Day

Filed under: — gavin @ 4 July 2018

We hold these truths to be self-evident, that all models are created equal, that they are endowed by their Creators with certain unalienable Rights, that among these are a DOI, Runability and Inclusion in the CMIP ensemble mean.

Well, not quite. But it is Independence Day in the US, and coincidentally there is a new discussion paper (Abramowitz et al) (direct link) posted on model independence just posted at Earth System Dynamics.

More »

References

  1. G. Abramowitz, N. Herger, E. Gutmann, D. Hammerling, R. Knutti, M. Leduc, R. Lorenz, R. Pincus, and G.A. Schmidt, "Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing", 2018. http://dx.doi.org/10.5194/esd-2018-51

30 years after Hansen’s testimony

Filed under: — gavin @ 21 June 2018

“The greenhouse effect is here.”
– Jim Hansen, 23rd June 1988, Senate Testimony

The first transient climate projections using GCMs are 30 years old this year, and they have stood up remarkably well.

We’ve looked at the skill in the Hansen et al (1988) (pdf) simulations before (back in 2008), and we said at the time that the simulations were skillful and that differences from observations would be clearer with a decade or two’s more data. Well, another decade has passed!

More »

References

  1. J. Hansen, I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russell, and P. Stone, "Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model", Journal of Geophysical Research, vol. 93, pp. 9341, 1988. http://dx.doi.org/10.1029/JD093iD08p09341

If you doubt that the AMOC has weakened, read this

A few weeks ago, we’ve argued in a paper in Nature that the Atlantic overturning circulation (sometimes popularly dubbed the Gulf Stream System) has weakened significantly since the late 19th Century, with most of the decline happening since the mid-20th Century. We have since received much praise for our study from colleagues around the world (thanks for that). But there were also some questions and criticisms in the media, so I’d like to present a forum here for discussing these questions and hope that others (particularly those with a different view) will weigh in in the comments section below. More »

Transparency in climate science

Good thing? Of course.*

More »

The Alsup Aftermath

The presentations from the Climate Science tutorial last month have all been posted (links below), and Myles Allen (the first presenter for the plaintiffs) gives his impression of the events.
More »

Alsup asks for answers

Some of you might have read about the lawsuit by a number of municipalities (including San Francisco and Oakland) against the major oil companies for damages (related primarily to sea level rise) caused by anthropogenic climate change. The legal details on standing, jurisdiction, etc. are all very interesting (follow @ColumbiaClimate for those details), but somewhat uniquely, the judge (William Alsup) has asked for a tutorial on climate science (2 hours of evidence from the plaintiffs and the defendents). Furthermore, he has posted a list of eight questions that he’d like the teams to answer.

More »

O Say Can You CO2…

Filed under: — group @ 12 October 2017

Guest Commentary by Scott Denning

The Orbiting Carbon Observatory (OCO-2) was launched in 2014 to make fine-scale measurements of the total column concentration of CO2 in the atmosphere. As luck would have it, the initial couple of years of data from OCO-2 documented a period with the fastest rate of CO2 increase ever measured, more than 3 ppm per year (Jacobson et al, 2016;Wang et al, 2017) during a huge El Niño event that also saw global temperatures spike to record levels.

As part of a series of OCO-2 papers being published this week, a new Science paper by Junjie Liu and colleagues used NASA’s comprehensive Carbon Monitoring System to analyze millions of measurements from OCO-2 and other satellites to map the impact of the 2015-16 El Niño on sources and sinks of CO2, providing insight into the mechanisms controlling carbon-climate feedback.

More »

References

  1. J. Wang, N. Zeng, M. Wang, F. Jiang, H. Wang, and Z. Jiang, "Contrasting terrestrial carbon cycle responses to the two strongest El Niño events: 1997–98 and 2015–16 El Niños", 2017. http://dx.doi.org/10.5194/esd-2017-46
  2. J. Liu, K.W. Bowman, D.S. Schimel, N.C. Parazoo, Z. Jiang, M. Lee, A.A. Bloom, D. Wunch, C. Frankenberg, Y. Sun, C.W. O’Dell, K.R. Gurney, D. Menemenlis, M. Gierach, D. Crisp, and A. Eldering, "Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño", Science, vol. 358, pp. eaam5690, 2017. http://dx.doi.org/10.1126/science.aam5690

1.5ºC: Geophysically impossible or not?

Filed under: — group @ 4 October 2017

Guest commentary by Ben Sanderson

Millar et al’s recent paper in Nature Geoscience has provoked a lot of lively discussion, with the authors of the original paper releasing a statement to clarify that their paper did not suggest that “action to reduce greenhouse gas emissions is no longer urgent“, rather that 1.5ºC (above the pre-industrial) is not “geophysically impossible”.

The range of post-2014 allowable emissions for a 66% chance of not passing 1.5ºC in Millar et al of 200-240GtC implies that the planet would exceed the threshold after 2030 at current emissions levels, compared with the AR5 analysis which would imply most likely exceedance before 2020. Assuming the Millar numbers are correct changes 1.5ºC from fantasy to merely very difficult.

But is this statement overconfident? Last week’s post on Realclimate raised a couple of issues which imply that both the choice of observational dataset and the chosen pre-industrial baseline period can influence the conclusion of how much warming the Earth has experienced to date. Here, I consider three aspects of the analysis – and assess how they influence the conclusions of the study.
More »

Sensible Questions on Climate Sensitivity

Filed under: — group @ 15 August 2017

Guest Commentary by Cristian Proistosescu, Peter Huybers and Kyle Armour

tl;dr 

Two recent papers help bridge a seeming gap between estimates of climate sensitivity from models and from observations of the global energy budget. Recognizing that equilibrium climate sensitivity cannot be directly observed because Earth’s energy balance is a long way from equilibrium, the studies instead focus on what can be inferred about climate sensitivity from historical trends. Calculating a climate sensitivity from the simulations that is directly comparable with that observed shows both are consistent. Crucial questions remain, however, regarding how climate sensitivity will evolve in the future.

More »